Problems & Puzzles: Puzzles

 

Puzzle 835. Goldbach squares.

Dmitry Kamenetsy sent the following nice puzzle:

A Goldbach square of order N is a NxN square filled with odd primes such that the sum of any two adjacent cells is exactly one of the even numbers from 6 to 4+4N(N-1) inclusive. Every even number in this range must occur exactly once. For example, here is a Goldbach square of order 3:
 
7 5 3 
17 11 3 
3 7 19 

The sums across rows are:
 
7+5 = 12
5+3 = 8
17+11 = 28
11+3 = 14
3+7 = 10
7+19 = 26
 
The sums down columns are:

7+17 = 24
17+3 = 20
5+11 = 16
11+7 = 18
3+3 = 6
3+19 = 22

Notice that every even number from 6 to 28 appears exactly once.

Dmitry has calculated a solution for a square 10x10, that I will publish next week


Q1: What is the largest Goldbach square you can find?
Q2: Do Goldbach squares exist for every N>=2?


Contributions came from Emmanuel Vantieghem.

Emmanuel wrote:

I send you my biggest solution up to now : N=7
 
  3   3   5   5   7   7  11
 13  17  17  19  19  37  17
 19  23  29  29  31  31  47
 47  47  43  53  53  61  41
 29  71  61  59 101  47  83
 97  73  13  97  61  89  83
 19  79  67  67  61  79  59

There are also solutions for  N = 2, 4, 5, 6.

***

As I promised, here is the Dmitry's N=10 solution that he sent some weeks ago:

89 11 101 71 271 13 5 89 59 197 
107 227 23 251 67 19 3 211 29 47 
13 83 47 79 43 313 3 139 127 131 
3 223 11 163 7 13 181 181 37 61 
89 79 73 151 3 173 73 131 227 97 
199 149 179 97 41 7 127 233 71 47 
97 17 11 31 5 7 109 53 37 31 
257 89 251 101 131 19 37 241 67 7 
79 109 31 191 29 11 43 19 163 53 
127 163 181 89 179 23 59 5 47 19 

***

 

Records   |  Conjectures  |  Problems  |  Puzzles