Problems & Puzzles: Puzzles

Puzzle 411. Magic squares M & p(M)

 Now a very charming puzzle.

Giovanni Resta has sent to me a magic square that he claims to be the smallest 3x3 magic square M such that if you change every entry k in M by p(k) you get a new magic square p(M), where p(k) is the k-th prime.

Q1. Can you compute the first five smallest magic squares M having this property? Note that k is not asked to be necessarily a prime.

Q2. Find nxn magic square having the same property, for n=4, 5 & 6, not necessarily minimal.

Q3. Find the smallest 3x3 magic square M such that p(M) & p(p(M)) are magic too.

By my side I will add just a fourth and perhaps simpler question than Q2 & Q3:

Q4. Find the smallest 3x3 magic square M such that p(M) is magic but every entry k in M is prime.

 

 

Andreas Thomas Höglund found (Aug. 07) four solutions to Q2, for n=4. Here is his minimal solution with Magic sums 58 & 192 for M & P(M).

 

                 
4 15 29 10   7 47 109 29  
16 18 5 19   53 61 11 67  
17 22 13 6   59 79 41 13  
21 3 11 23   73 5 31 83  
                 

***

J. C. Rosa found (Aug, 31, 07) the same minimal solution already found by Resta, asked in Q1. Now is time to show it:

Magic square ( M )
 
        26199       25436      25819
        25438       25818      26198          magic sum=77454
        25817       26200      25437
             
                  Magic square p(M)
 
       302573        292667        297629
       292679        297623        302567     magic sum=892869
       297617        302579        292673          

How far is the second smallest?

***

J. C. Rosa added (Sept 6, 07)

Here is the second smallest solution of Q1:
 
              Magic square ( M )

         30579       29536      30059
         29538       30058      30578          magic sum=90174
         25817       26200      2543

                 Magic square p(M)
 

       357683        344417        351059
       344429        351053        357677     magic sum=1053159
       351047        357689        344423          

On Set. 20, 07, he wrote again:

Here is the third smallest solution :
 
               Magic square ( M )

 

        34063       30099      32108
        30135       32090      34045          magic sum=96270
        32072       34081      30117             

                  Magic square p(M)

       402797        351551        377543
       352043        377297        402551     magic sum=1131891
       377051        403043        351797          

***

Finally on Oct 30 he wrote:

Here are the fourth and the fifth smallest solutions of the
question 1 :
 
4°)                 Magic square ( M )

        49765       42208      45988
        42210       45987      49764          magic sum=137961
        45986       49766      42209             

                  Magic square p(M)

       608831        508919        558893
       508943        558881        608819     magic sum=1676643
       558869        608843        508931          

 

 5°)                     Magic square ( M )

        47482       44839      46162
        44841       46161      47481          magic sum=138483
        46160       47483      44840             

                  Magic square p(M)

       578603        543497        561059
       543509        561053        578597     magic sum=1683159
       561047        578609        543503          

 

Now  the question is completely solved and I can try to solve
 the question 4.......

***

 

 


Records   |  Conjectures  |  Problems  |  Puzzles