Problems & Puzzles: Puzzles

 

 

Problems & Puzzles: Puzzles

Puzzle 1239 891077215721081784886888257701070827

From the Prime Curios! pages of my friend G. L. Honaker, Jr., I rescue the following interesting curio, to create a new puzzle:

891077215721081784886888257701070827 is the smaller in a set of twin primes whose product is the concatenation of two successive integers, i.e., 891077215721081784886888257701070827*891077215721081784886888257701070829 = 794018604377235322848433897872605582&794018604377235322848433897872605583. [Israel, what else?]

Q1. Israel asks, Is there another set of twin primes with this property?

I (CR) add the following two similar questions:

Q2. In the solution found by Israel the consecutive integers are in ascending order. Is there an example in descending order?  

Q3. Redo but for two consecutive primes (not necessarily twins), whose product is the concatenation of two successive integers (primes or not, in any of the two posible orders). Show three examples, if any.

Q4. Redo but for two consecutive odd integers (not necessarily primes), whose product is the concatenation of two successive primes (twins or not, in any of the two posible orders). Show three example, if any.

Note* This puzzle is closely related to the Problem 80, but exploring more variations, probably easier. Who knows?.

 


From Set 27 to Oct 3, 2025, contributions came from Michael Branicky, Oscar Volpatti, Simon Cavegn,

***

Michael wrote:

I tested even-length-digit products covering all 2..22 digits (Q1-Q3) and 2..20 digits (Q4), respectively.

I found the following.

Q1, Q2:
No instances

Q3:
43 * 47 = 2021 = 20 & 21 (intgers, ascending)
Q4:
5 * 7 = 35 = 3 & 5 (twins, ascending)
834657017 * 834657019 = 696652337696652323 = 696652337 & 696652323 (primes, non-twins, descending)
6484544055 * 6484544057 = 42049311614204931135 = 4204931161 & 4204931135 (primes, non-twins, descending)

***

Oscar wrote:

I found 4 solutions to Q1.

Questions Q1 and Q2 of Puzzle 1239 are a re-proposal of question Q2 of Problem 80.
I labelled my findings as solutions for Problem 80 due to priority, but they are solutions for puzzle 1239 as well.
...
I was able to find four more solutions to question Q2 of problem 80.
Search strategy.
We need to find twin primes p and q, whose product is the concatenation of two consecutive integers a and b.
If integer b has n digits, then equality  p*q = a*10^n+b  holds.
Substitute p = x-1, q = x+1, b = a+1 (ascending case), then rearrange, obtaining:
x^2 = a*(10^n+1) + 2,
or, viewed as a congruence relation:
x^2 == 2  mod  10^n+1.
In other words;
2 must be a quadratic residue modulo w(n) = 10^n+1; 
x must be a square root of 2 modulo w(n). 
If complete factorization of number w(n) is known, we are able to check if 2 is a quadratic residue modulo each prime factor of w(n), and eventually to efficiently compute all possible square roots modulo w(n) by using Tonelli-Shanks algorithm and chinese remainder theorem; then, for each square root x found, we can check if x-1 and x+1 are both prime. 
We only need to consider numbers n of the form n = 4*k, because:
2 is non-residue for prime 11, which divides w(n) whenever n = 2*k+1;
2 is non-residue for prime 101, which divides w(n) whenever n = 4*k+2.
Complete factorization of w(n) is currently known for many small numbers n=4*k; first few exceptions are 332, 356, 392, 400...
After known solution for n=36, found by Israel, there are four more solutions for n=396.
Note: quadratic residue 2 admits 2^22 = 4194304 distinct square roots modulo w(396). 

Solution 1:
p=43421977283748161694072633893336245227391609730149263562729144351205199724796175015090831582520633502568118225295
4355463934702107964728269885096262688644034853639395077615105799339919571601786192665103151170947581386505769710635
8281169731316477061803013796578132204324130645367278268832822528117841212561164863854548598492928577776677190168812
51956101283374338871503089431823276421261037909974359
q=43421977283748161694072633893336245227391609730149263562729144351205199724796175015090831582520633502568118225295
4355463934702107964728269885096262688644034853639395077615105799339919571601786192665103151170947581386505769710635
8281169731316477061803013796578132204324130645367278268832822528117841212561164863854548598492928577776677190168812
51956101283374338871503089431823276421261037909974361
a=18854681112303413822576251552573222041179970908589967901630491213534262123467515417959431671101045859278289799547
2072329020523891831735526214027114750246510828728078518168950474473546121279840909283103404117348405135650173510498
6448301850740446178599990463411654198611390106011822536831126178742916867747564935245124486253351521466845313072487
89935557410917696361947584483395574902075975857409598
b=18854681112303413822576251552573222041179970908589967901630491213534262123467515417959431671101045859278289799547
2072329020523891831735526214027114750246510828728078518168950474473546121279840909283103404117348405135650173510498
6448301850740446178599990463411654198611390106011822536831126178742916867747564935245124486253351521466845313072487
89935557410917696361947584483395574902075975857409599

Solution 2:
p=6926194940047018231075250440120916569154218944767304567848697763518419498517283951214660494476098160236154363163
940350744550124878160062066526929127821523438648048402913709622918287757826018857708269439761253689675136319449129
259753483696163048939606864446410462863907843143899148375860569277119108527813494706655718646292621967798156829917
3914978874060061374111892271305964203583405377795224439
q=6926194940047018231075250440120916569154218944767304567848697763518419498517283951214660494476098160236154363163
940350744550124878160062066526929127821523438648048402913709622918287757826018857708269439761253689675136319449129
9259753483696163048939606864446410462863907843143899148375860569277119108527813494706655718646292621967798156829917
3914978874060061374111892271305964203583405377795224441
a=4797217634753291846832451142924997630503479914489772148256327662897429568890924219899803582698811791173955211228
421393431940084773799783552880160578764670115641655536950814260923251076801043586429108797363235821252049289836489
657919967606712714397884945818358083289034784300961249284449346258237959295262728564564560213989343715243898260919
62816622886154229923319027800821831198068009669973313598
b=4797217634753291846832451142924997630503479914489772148256327662897429568890924219899803582698811791173955211228
421393431940084773799783552880160578764670115641655536950814260923251076801043586429108797363235821252049289836489
657919967606712714397884945818358083289034784300961249284449346258237959295262728564564560213989343715243898260919
62816622886154229923319027800821831198068009669973313599

Solution 3:
p=744327641287170657821553108647606582183193069683596569626959039525161984224686049208268854589238227685023628865
90496919430419854623049083241405167816559545550665201934307502733126683033272497547981888938175485693673502243184
90333143029690172233926128750116669388059180787718002446121361759308315882231578477774840726947806076836805219862
05187179717864091713524226897544646272052850452950191099589
q=744327641287170657821553108647606582183193069683596569626959039525161984224686049208268854589238227685023628865
90496919430419854623049083241405167816559545550665201934307502733126683033272497547981888938175485693673502243184
90333143029690172233926128750116669388059180787718002446121361759308315882231578477774840726947806076836805219862
05187179717864091713524226897544646272052850452950191099591
a=554023637584122997683936635345442956841378092504970263617137430644454780538395523675417135731340814094008520893
61333419897342636691611329096701601308784531760426323553614293494021907031823018859897006300449656971203624271901
71227710024603694058033483337150669760488515201428324452777824470751168383547803325517483385565509847307563076905
97869881475467335078626482995588820062280155100053298168098
b=554023637584122997683936635345442956841378092504970263617137430644454780538395523675417135731340814094008520893
61333419897342636691611329096701601308784531760426323553614293494021907031823018859897006300449656971203624271901
71227710024603694058033483337150669760488515201428324452777824470751168383547803325517483385565509847307563076905
97869881475467335078626482995588820062280155100053298168099

Solution 4:
p=842998528349081253534543744292255092008169997391901355230148830053031617780085904214756929998540884814037325533
90113518261684440509100477143949635330812998640468575374492022972006347014332490583623250990611411184312556031918
84225925818632362497180065185045651861118415342355491599057552891845554461853749566343226689489462308440434253241
01560773341817937869825508635287259190902056756694480244731
q=842998528349081253534543744292255092008169997391901355230148830053031617780085904214756929998540884814037325533
90113518261684440509100477143949635330812998640468575374492022972006347014332490583623250990611411184312556031918
4225925818632362497180065185045651861118415342355491599057552891845554461853749566343226689489462308440434253241
01560773341817937869825508635287259190902056756694480244733
a=710646518798716749885888068749207298094224769539941699269220820976910827480616761800098916500398265681769559108
80345886594343862274820615198265133053007535500422085601773222087329184834218012271348479234042981460819335778881
13628907237586053273332977796517912237637948440293680166145685557626507748689351132603445028861708285667521894708
61232316681860397280231859083596903980370829107018613751822
b=710646518798716749885888068749207298094224769539941699269220820976910827480616761800098916500398265681769559108
80345886594343862274820615198265133053007535500422085601773222087329184834218012271348479234042981460819335778881
13628907237586053273332977796517912237637948440293680166145685557626507748689351132603445028861708285667521894708
61232316681860397280231859083596903980370829107018613751823

Near-solution 1 (padding a zero between a and b):
p=132459146553851342468280137462907961256778599572127168697613627395797864545120181932512550120074838267571230326
59057805265238126151009926482025922634455162830662638971286039357787806318583237184481840508325480848875839163958
35421682349209766242757752418692049470798449717329600245535868022007278163866966872347571257642365709639746293074
56819077973483466158758874520522061472502928227161025854387
q=132459146553851342468280137462907961256778599572127168697613627395797864545120181932512550120074838267571230326
59057805265238126151009926482025922634455162830662638971286039357787806318583237184481840508325480848875839163958
35421682349209766242757752418692049470798449717329600245535868022007278163866966872347571257642365709639746293074
56819077973483466158758874520522061472502928227161025854389
a=175454255057746679753551477481149198001863462921815045236879131688015185707960318175844297731340424747776160190
36744929447331682342201909117211197538670317928844322930798442734879878759821392616177464616015926438519996155203
11266610030568379022116623393621117023528351707179913008880470871056872332420700450997101497259869054570856604313
6871120401742203937574666339046302194963345933385378854542
b=175454255057746679753551477481149198001863462921815045236879131688015185707960318175844297731340424747776160190
36744929447331682342201909117211197538670317928844322930798442734879878759821392616177464616015926438519996155203
11266610030568379022116623393621117023528351707179913008880470871056872332420700450997101497259869054570856604313
6871120401742203937574666339046302194963345933385378854543

Near-solution 2 (padding two zeros between a and b):
p=74891688847257450592533099102261206779237782525996460265784865603376736693575606072413598847688542715795769060
5355911014478369335640359989895083006535689204246346823555373439692349804852379918505844207975493234609783331418
8791147898745726973002965182584337093992132422114590993822389648067629658023532183990139167585416473901223039798
9523382152486351780807942344738574335059458424304892164596791
q=74891688847257450592533099102261206779237782525996460265784865603376736693575606072413598847688542715795769060
5355911014478369335640359989895083006535689204246346823555373439692349804852379918505844207975493234609783331418
8791147898745726973002965182584337093992132422114590993822389648067629658023532183990139167585416473901223039798
9523382152486351780807942344738574335059458424304892164596793
a=56087650583944260087479955598379183082820338846270912471402524153899483208377130690000895227479365175852060873
7027126416273432642983530105401634916988199642286958484866128375200352678198799197715448156417298083380558565492
7936245334100742797636571396498214703077990244602709792997299753006996562533654344909042668587693662004192283002
038247576992628454326369288980353346927584133305031936691262
b=56087650583944260087479955598379183082820338846270912471402524153899483208377130690000895227479365175852060873
7027126416273432642983530105401634916988199642286958484866128375200352678198799197715448156417298083380558565492
7936245334100742797636571396498214703077990244602709792997299753006996562533654344909042668587693662004192283002
038247576992628454326369288980353346927584133305031936691263

Accordingly I reported the same in  Problem 80.

Q2. I found no solutions involving numbers with 400 digits or less.
I found several "small" solutions to questions Q3 and Q4.
I'm sending the first three examples for each of the two possible orders.

Q3.
p*q = a*10^n+b
p and q consecutive primes;
a and b consecutive integers, in ascending or descending order.

n=2, ascending:
p=43
q=47
a=20
b=21

n=70, ascending:
p=5018676928083894672666012088036109843105301546773725102790665815794437
q=5018676928083894672666012088036109843105301546773725102790665815794441
a=2518711810848159770018909254809359591672377471484881441744436703324716
b=2518711810848159770018909254809359591672377471484881441744436703324717

n=72, ascending:
p=594877471202462845078583461328011525336167267541426222873827376039101347
q=594877471202462845078583461328011525336167267541426222873827376039101401
a=353879205744237011544616255111782082608671961515039134082358165448687146
b=353879205744237011544616255111782082608671961515039134082358165448687147

n=16, descending:
p=4803478892324963
q=4803478892324969
a=2307340946901148
b=2307340946901147

n=49, descending:
p=8286379552872432369913616581715872482998493372751
q=8286379552872432369913616581715872482998493372979
a=6866408609426233220587132313827017515323918295230
b=6866408609426233220587132313827017515323918295229

n=69, descending:
p=490013264416812329565014423265279804243036334210765009245277343727893
q=490013264416812329565014423265279804243036334210765009245277343727919
a=240112999304420836344925353580008786179649985378628525348797363144668
b=240112999304420836344925353580008786179649985378628525348797363144667

Q4.
a*b = p*10^n+q
a and b consecutive odd integers;
p and q consecutive primes, in ascending or descending order.

n=30, descending:
a=855625071271932741931934415859 (prime too)
b=855625071271932741931934415861
p=732094262589099984319419539609
q=732094262589099984319419539599

n=40, descending:
a=4136761786960700726205853213757005140067
b=4136761786960700726205853213757005140069
p=1711279808205828990082459057372299044633
q=1711279808205828990082459057372299044623

n=42, descending:
a=703865371197569009574742859588932357881547
b=703865371197569009574742859588932357881549
p=495426460771091609483891383732674398876353
q=495426460771091609483891383732674398876303

n=43, ascending:
a=3268827221131525310139400823384961090165987
b=3268827221131525310139400823384961090165989
p=1068523140161044986908558033942841392016019
q=1068523140161044986908558033942841392016143

n=50, ascending:
a=61702459582693580766728536883477559797309970182731
b=61702459582693580766728536883477559797309970182733
p=38071935185539348931763212891175164990909470983779
q=38071935185539348931763212891175164990909470983823

n=90, ascending:
a=906201486411515766066220937238863455524728117999749757410737524896106789346178558023554421
b=906201486411515766066220937238863455524728117999749757410737524896106789346178558023554423
p=821201133974440593612620801181410276125769912822837495165176928965609351685521762795753679
q=821201133974440593612620801181410276125769912822837495165176928965609351685521762795754083

***

Simon wrote:

Q1:
Found nothing more than the already known solution.

The file Puzzle1239_Findings.txt (24 Kb) contains the found numbers that satisfy n*(n+2) = concat(x,y) where y=x+1. I marked the findings with "None prime", "Solo prime", "Twin prime".

The file Puzzle1239_Factors.txt (16MB) contains the found factors of 10^k+1, for k=1..296 This is an intermediate step, needed as input for the Tonelli–Shanks algorithm.
These k were NOT factored: 106,134,149,151,158,163,122,167,169,172,181,182,183,184,191,192,194,196,202,212,219,216,221,223,226,232,228,229,233,236,238,239,
240,242,247,248,
244,241,246,249,250,255,257,258,
259,260,266,267,268,270,
271,272,274,278,277,275,276,280,281,284,283,282,286,289,290,291,292,294

Both primes are available to be sent by me (CR) to anyone interested in them, in request, "May be to show the search progress and hint on how to continue more efficiently than brute force?"

***

 

Records   |  Conjectures  |  Problems  |  Puzzles