Problems & Puzzles:
Puzzles
Puzzle 3.- Magic Squares with consecutive
primes
Harry Nelson was the first in
produce (and he won a $100.00 prize offered by Martin
Gardner) a 3x3 matrix containing only consecutive primes.
His solution has in the central
cell the prime 1480028171. The other cells has the
following primes +/-12 ; +/-18, +/-30, +/-42.
(Ref. 2, p. 18)
While it was not easy produce the
solutions, for sure you can assign the primes obtained by
Nelson. Do you want to try ?
We know that Nelson got more than
other 20 such magical squares.
1.- Is there any method for doing
that ?
2.- Is there any 4x4 matrix with
consecutive primes ?
Aale
de Winkel sent (30/06/99) the following
comment:
:
"...given a regular
order n magic square (numbers 1..n^2 : magic number t=n(n^2+1)/2) substitute each number (i) with
a number (x + i * d) a magic square is obtained
with magic number nx+td = n(x+n^2+1)/2. hence any n^2
primes in arithmetic progression thus gives magic squares
of order n."
According to this method you can get two 3x3 magic
squares using the 10 consecutive primes in A.P. found by
Dubner, Tony Forbes, Manfred Toplic et al.
***
Several 4x4 prime magic
squares can be found at:
http://mathforum.org/te/exchange/hosted/suzuki/MagicSquare.4x4.prime.html
***
Luke Pebody sent the following solutions to Q2 (April 2005):
31-101
67 89 43 59
47 79 101 31
83 37 41 97
61 53 73 71
37-103
79 59 71 67
53 73 61 89
97 101 41 37
47 43 103 83
79 67 83 47
41 101 61 73
59 71 43 103
97 37 89 53
1229-1321
1289 1279 1291 1259
1231 1283 1301 1303
1277 1237 1297 1307
1321 1319 1229 1249
1279 1289 1259 1291
1283 1303 1231 1301
1237 1277 1307 1297
1319 1249 1321 1229
1301 1231 1303 1283
1259 1291 1279 1289
1321 1319 1229 1249
1237 1277 1307 1297
4931-5021
4951 4931 5021 4993
4999 4967 4973 4957
5003 4987 4969 4937
4943 5011 4933 5009
12553-12689
12653 12577 12589 12659
12583 12611 12647 12637
12689 12619 12601 12569
12553 12671 12641 12613
3259909-3260063
3260051 3260017 3259933 3259979
3259999 3259931 3260063 3259987
3260021 3260029 3259957 3259973
3259909 3260003 3260027 3260041
3324329-3324521
3324389 3324521 3324407 3324361
3324353 3324457 3324509 3324359
3324499 3324371 3324341 3324467
3324437 3324329 3324421 3324491
26025107-26025281
26025211 26025239 26025127 26025257
26025203 26025179 26025199 26025253
26025271 26025229 26025227 26025107
26025149 26025187 26025281 26025217
***
On October, 2005, Luke Pebody wrote:
Here is a 5x5 magic square
067 047 103 017 079
101 023 053 029 107
059 113 043 061 037
013 089 083 109 019
073 041 031 097 071
***
Anurag Sahay wrote (July 07):
Some more 5x5 examples:
magic sum=313
19 29 113 43 109
103 83 13 67 47
53 71 59 107 23
101 41 31 79 61
37 89 97 17 73
103 59 67 13 71
47 17 89 53 107
31 79 73 101 29
113 97 43 37 23
19 61 41 109 83
I found an example with a different magic sum
which is 703.
It contains consecutive primes starting from 79.
79 167 193 107 157
181 151 191 83 97
131 109 127 137 199
139 163 103 197 101
173 113 89 179 149
I also found another 5x5 example with a different magic
sum: 785. It has consecutive primes starting with 97.
173 127 149 223 113
103 157 227 101 197
193 139 181 163 109
137 211 131 107 199
179 151 097 191 167
I found a 6x6 example . Magic sum=2316. Least prime=277
463 347 293 277 487 449
461 337 349 479 317 373
311 331 389 397 421 467
431 457 433 401 313 281
283 353 443 379 419 439
367 491 409 383 359 307
***
On November 2012 Natalia Makarova wrote:
I looked puzzle number 3 on your site.
I have participated in this project.
In OEIS has an article:
https://oeis.org/A073520
I made a magic square of order 14 consecutive prime
numbers (Magic Constant = 9660):
89 |
97 |
193 |
227 |
241 |
521 |
563 |
683 |
911 |
1063 |
1231 |
1237 |
1283 |
1321 |
277 |
1091 |
1181 |
431 |
1153 |
757 |
739 |
937 |
941 |
433 |
1019 |
113 |
139 |
449 |
701 |
283 |
197 |
137 |
827 |
503 |
1069 |
1187 |
1087 |
233 |
499 |
877 |
1051 |
1009 |
1223 |
461 |
541 |
1259 |
149 |
1163 |
743 |
719 |
359 |
479 |
647 |
1291 |
163 |
463 |
311 |
883 |
601 |
239 |
1289 |
269 |
307 |
967 |
491 |
829 |
211 |
857 |
1109 |
1297 |
1097 |
809 |
1061 |
1129 |
823 |
487 |
523 |
587 |
443 |
733 |
199 |
853 |
317 |
599 |
617 |
977 |
167 |
643 |
127 |
709 |
773 |
509 |
577 |
811 |
997 |
971 |
1361 |
421 |
1301 |
439 |
1249 |
419 |
109 |
1279 |
1123 |
569 |
383 |
907 |
653 |
251 |
337 |
641 |
659 |
727 |
557 |
691 |
1327 |
401 |
983 |
179 |
1151 |
331 |
761 |
1117 |
157 |
619 |
229 |
991 |
607 |
389 |
257 |
859 |
1171 |
1213 |
547 |
1033 |
1319 |
631 |
263 |
151 |
1229 |
191 |
181 |
571 |
863 |
1307 |
281 |
293 |
1277 |
379 |
821 |
367 |
887 |
1013 |
673 |
919 |
929 |
1303 |
947 |
347 |
397 |
1039 |
173 |
1031 |
467 |
313 |
769 |
353 |
593 |
953 |
1093 |
1021 |
797 |
787 |
881 |
101 |
103 |
1049 |
223 |
409 |
457 |
1193 |
661 |
839 |
1103 |
1201 |
751 |
271 |
107 |
677 |
1217 |
349 |
613 |
373 |
1367 |
131 |
I also was a magic square of order 15, it is in this
article OEIS:
https://oeis.org/A164843 ?
And there are a few articles in the drafting of the OEIS
magic squares of prime numbers: A173981, A176571, A177434, A188536, A188537, A191533,
A189188, A191679.
Here is the next larger one (15x15) gotten by Natalia
Makarova, published in
https://oeis.org/A073520 composed by 225 consecutive primes from 131 to
1619, with a magical sum constant of of 12669.
131 |
167 |
229 |
461 |
541 |
617 |
733 |
911 |
967 |
1091 |
1259 |
1279 |
1319 |
1471 |
1493 |
547 |
907 |
1583 |
1613 |
149 |
1423 |
193 |
1601 |
941 |
137 |
233 |
389 |
1039 |
1283 |
631 |
1019 |
181 |
751 |
163 |
1453 |
1301 |
1297 |
1277 |
271 |
1619 |
1327 |
691 |
277 |
281 |
761 |
1307 |
719 |
359 |
919 |
1063 |
653 |
1237 |
269 |
1433 |
863 |
1439 |
313 |
191 |
1021 |
883 |
503 |
1367 |
433 |
1013 |
829 |
1153 |
317 |
347 |
1109 |
491 |
1249 |
677 |
1451 |
1489 |
241 |
421 |
311 |
1487 |
439 |
1049 |
1409 |
1123 |
463 |
409 |
983 |
449 |
1031 |
1163 |
373 |
1559 |
1399 |
1193 |
419 |
1531 |
971 |
647 |
977 |
1051 |
709 |
479 |
1229 |
379 |
353 |
1093 |
239 |
599 |
953 |
1213 |
587 |
499 |
727 |
1321 |
787 |
307 |
1151 |
157 |
1571 |
1033 |
773 |
991 |
211 |
1291 |
1499 |
577 |
1087 |
349 |
947 |
467 |
739 |
613 |
1171 |
1609 |
173 |
839 |
1097 |
563 |
139 |
1373 |
1459 |
1289 |
443 |
619 |
1201 |
1427 |
809 |
881 |
1303 |
331 |
263 |
569 |
607 |
1607 |
1511 |
673 |
1181 |
1481 |
1217 |
523 |
661 |
857 |
223 |
743 |
197 |
431 |
757 |
853 |
643 |
701 |
179 |
1483 |
571 |
769 |
859 |
1447 |
659 |
929 |
997 |
1223 |
1129 |
227 |
1549 |
887 |
257 |
557 |
367 |
1061 |
601 |
337 |
1361 |
937 |
1231 |
811 |
1543 |
293 |
877 |
1579 |
1187 |
397 |
1069 |
509 |
683 |
797 |
1567 |
401 |
383 |
641 |
283 |
823 |
827 |
1523 |
1381 |
1117 |
457 |
1429 |
199 |
151 |
521 |
1009 |
487 |
1597 |
251 |
593 |
1553 |
1103 |
821 |
One more received on December 2012: Stefano Tognon and
Natalia Makarova, 35x35 magic square of consecutive primes for 3 to 9941,
magic constant 163043, produced on year 2009. Bigger solutions here:http://digilander.libero.it/ice00/magic/prime/orderConstant.html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1901 |
2003 |
647 |
2729 |
8627 |
9631 |
5407 |
7759 |
9929 |
2801 |
2999 |
499 |
5309 |
673 |
4651 |
5227 |
941 |
8951 |
1613 |
9791 |
7853 |
3617 |
9241 |
8269 |
1801 |
1723 |
3877 |
3677 |
1759 |
7109 |
2939 |
3413 |
2383 |
4547 |
8747 |
5081 |
787 |
4363 |
2767 |
5147 |
2029 |
619 |
6793 |
7573 |
1153 |
8087 |
2011 |
271 |
3593 |
3511 |
853 |
9473 |
9787 |
2281 |
7559 |
7151 |
157 |
7949 |
3217 |
7577 |
6779 |
4231 |
4987 |
7411 |
9413 |
2221 |
1889 |
9887 |
5927 |
509 |
757 |
2393 |
3 |
1181 |
3067 |
6353 |
3109 |
163 |
8009 |
2137 |
3041 |
5483 |
2777 |
1667 |
4451 |
9463 |
1619 |
1493 |
7523 |
2113 |
8699 |
8933 |
4051 |
9539 |
6733 |
2069 |
6883 |
7537 |
7541 |
2753 |
8527 |
1429 |
5623 |
8233 |
7691 |
8387 |
8419 |
433 |
3691 |
6827 |
3329 |
5507 |
4591 |
7793 |
1459 |
9619 |
7283 |
691 |
6961 |
5849 |
3853 |
571 |
2647 |
7127 |
6521 |
4019 |
7699 |
257 |
313 |
2027 |
2503 |
7753 |
2953 |
2833 |
2659 |
4271 |
3793 |
3389 |
7159 |
9857 |
7823 |
7057 |
239 |
1747 |
2243 |
2663 |
2381 |
6569 |
8147 |
3121 |
5281 |
1013 |
4583 |
557 |
1451 |
8123 |
7649 |
2239 |
6661 |
9679 |
569 |
4049 |
8839 |
7187 |
6427 |
5657 |
907 |
7477 |
2741 |
9283 |
1229 |
9127 |
5669 |
937 |
3719 |
5323 |
193 |
59 |
6899 |
1021 |
3709 |
8243 |
3833 |
8609 |
4421 |
827 |
8731 |
4289 |
233 |
5521 |
7927 |
8329 |
3251 |
8117 |
3607 |
37 |
5651 |
6469 |
2687 |
4409 |
5189 |
7687 |
2731 |
8111 |
1187 |
9371 |
4513 |
2837 |
4091 |
4931 |
661 |
7177 |
197 |
9461 |
2053 |
8689 |
2423 |
8647 |
631 |
4691 |
2711 |
367 |
8803 |
7951 |
6263 |
6947 |
6803 |
4639 |
5101 |
487 |
9323 |
8999 |
5303 |
719 |
8863 |
887 |
2161 |
2851 |
5393 |
2617 |
2857 |
23 |
8783 |
5351 |
4211 |
2591 |
9173 |
9349 |
1709 |
3779 |
7621 |
8209 |
3637 |
1471 |
6047 |
503 |
6737 |
9281 |
3457 |
607 |
6689 |
4003 |
3181 |
877 |
1499 |
5153 |
331 |
7757 |
4129 |
1063 |
2081 |
4153 |
5059 |
8221 |
9587 |
5237 |
419 |
7489 |
9467 |
2477 |
5009 |
7253 |
6323 |
2417 |
7669 |
3407 |
9181 |
9341 |
3079 |
4057 |
3313 |
8719 |
5279 |
1367 |
139 |
8807 |
9137 |
9811 |
3361 |
9391 |
3089 |
109 |
4549 |
709 |
3929 |
173 |
3889 |
2671 |
6871 |
4597 |
547 |
5171 |
1249 |
8167 |
263 |
9649 |
8849 |
593 |
7907 |
9497 |
2789 |
8693 |
9883 |
7211 |
3209 |
947 |
1993 |
6359 |
8059 |
1783 |
1033 |
8263 |
149 |
8539 |
31 |
6131 |
5023 |
179 |
11 |
3463 |
4673 |
107 |
8431 |
863 |
181 |
1811 |
7393 |
9151 |
577 |
9613 |
797 |
4241 |
7993 |
743 |
4993 |
4073 |
3541 |
6551 |
6299 |
9239 |
6977 |
6211 |
9293 |
6451 |
1609 |
2129 |
9521 |
2131 |
4079 |
7561 |
1481 |
9551 |
701 |
5903 |
8537 |
5693 |
79 |
4517 |
3461 |
1663 |
9419 |
2269 |
587 |
2927 |
1823 |
1031 |
5851 |
6421 |
2309 |
8543 |
8623 |
6337 |
137 |
4493 |
991 |
4933 |
9623 |
3371 |
3467 |
8707 |
6397 |
7247 |
3347 |
9013 |
1307 |
6073 |
53 |
1597 |
2971 |
2213 |
7309 |
5 |
5861 |
4663 |
6701 |
5791 |
1543 |
467 |
9067 |
6581 |
1319 |
1129 |
839 |
1201 |
5743 |
7297 |
4253 |
1093 |
8089 |
6761 |
1213 |
6203 |
421 |
8573 |
5051 |
8753 |
5233 |
6247 |
3643 |
5107 |
3221 |
3769 |
4621 |
9629 |
5231 |
2341 |
1097 |
7517 |
7207 |
4861 |
3229 |
7529 |
4201 |
4903 |
5519 |
3547 |
2963 |
9817 |
8971 |
5197 |
1151 |
3253 |
7883 |
379 |
6917 |
349 |
6089 |
3631 |
9157 |
2087 |
1193 |
3191 |
2549 |
2083 |
9479 |
4643 |
6113 |
3923 |
4243 |
281 |
7591 |
8017 |
1039 |
1549 |
131 |
4483 |
9743 |
6197 |
7717 |
7487 |
7817 |
2579 |
3911 |
3449 |
6763 |
3083 |
9319 |
1069 |
761 |
6959 |
8287 |
3931 |
167 |
9431 |
3623 |
2719 |
8501 |
7607 |
2677 |
5857 |
8563 |
4889 |
4723 |
967 |
5683 |
739 |
1091 |
4463 |
5653 |
3797 |
4391 |
9767 |
2543 |
5387 |
1877 |
9257 |
5477 |
683 |
821 |
4793 |
4133 |
7229 |
6563 |
3499 |
401 |
6833 |
6997 |
8821 |
4217 |
5639 |
9007 |
3917 |
9851 |
3559 |
9719 |
7039 |
2351 |
8923 |
1733 |
3169 |
3257 |
1399 |
1637 |
2819 |
211 |
5659 |
61 |
6121 |
1049 |
6199 |
1453 |
6101 |
8597 |
2089 |
7433 |
8039 |
2693 |
7901 |
6301 |
7013 |
2099 |
9091 |
1627 |
5179 |
4721 |
4283 |
2039 |
3767 |
7643 |
89 |
5471 |
953 |
3821 |
337 |
1009 |
8081 |
4507 |
4603 |
8377 |
5939 |
4397 |
4999 |
1531 |
7321 |
3539 |
229 |
6007 |
4919 |
8363 |
6163 |
2347 |
29 |
4817 |
3491 |
2521 |
8101 |
409 |
19 |
8941 |
8191 |
5879 |
4799 |
6133 |
643 |
2621 |
5099 |
5573 |
277 |
4327 |
8837 |
353 |
4679 |
6277 |
8677 |
4157 |
5953 |
5039 |
8093 |
4481 |
6599 |
3023 |
7121 |
3581 |
2957 |
7933 |
373 |
389 |
6653 |
3137 |
9161 |
4111 |
6547 |
4973 |
3533 |
983 |
5783 |
9739 |
8317 |
3203 |
971 |
6967 |
5479 |
1571 |
6043 |
8291 |
1741 |
1567 |
9547 |
7841 |
4259 |
4519 |
2593 |
2207 |
3701 |
4229 |
9697 |
5087 |
3391 |
7129 |
613 |
3469 |
7 |
9721 |
1559 |
2357 |
2251 |
1061 |
5821 |
9439 |
881 |
1087 |
5647 |
8713 |
9437 |
5779 |
9043 |
7681 |
7723 |
4177 |
9433 |
1861 |
1931 |
6317 |
3881 |
457 |
6691 |
3163 |
5897 |
359 |
1283 |
6991 |
2267 |
8963 |
3659 |
1301 |
1553 |
4021 |
4787 |
3259 |
8069 |
6949 |
6659 |
8273 |
2683 |
7069 |
2699 |
977 |
521 |
7349 |
6229 |
199 |
9907 |
7019 |
4139 |
1949 |
9311 |
1433 |
9277 |
1601 |
9833 |
4457 |
191 |
809 |
7417 |
1223 |
1669 |
9221 |
8629 |
7451 |
2437 |
4561 |
5827 |
811 |
4649 |
8179 |
5119 |
4027 |
2143 |
1237 |
6673 |
659 |
3823 |
2273 |
8761 |
6911 |
103 |
3061 |
1217 |
8219 |
7459 |
3583 |
7879 |
8741 |
2551 |
5717 |
9049 |
1933 |
3671 |
463 |
4337 |
6857 |
5441 |
4733 |
17 |
479 |
5527 |
7103 |
1621 |
4373 |
6091 |
6473 |
727 |
3803 |
7369 |
8443 |
4093 |
7583 |
9733 |
7877 |
3037 |
227 |
1231 |
3727 |
9001 |
1409 |
9901 |
5807 |
6173 |
4969 |
3343 |
653 |
5381 |
3613 |
3319 |
2909 |
6079 |
7603 |
8293 |
8423 |
2411 |
1327 |
443 |
7079 |
251 |
9941 |
2237 |
307 |
8861 |
4273 |
2879 |
4007 |
4261 |
2111 |
2713 |
5641 |
3967 |
7213 |
829 |
9769 |
8297 |
9109 |
9397 |
641 |
3863 |
4957 |
1787 |
1951 |
7829 |
2297 |
1997 |
8599 |
1321 |
6791 |
1303 |
2803 |
4357 |
6781 |
1297 |
8887 |
7333 |
8429 |
4909 |
5437 |
3119 |
5689 |
6011 |
1447 |
1279 |
1259 |
1171 |
4567 |
6491 |
6719 |
3271 |
1427 |
8581 |
8053 |
2153 |
6143 |
7547 |
3739 |
3761 |
3529 |
7789 |
1051 |
6449 |
1973 |
127 |
5399 |
6823 |
4099 |
6367 |
4759 |
4831 |
293 |
6379 |
6637 |
6373 |
563 |
3557 |
5443 |
1523 |
3187 |
5419 |
3527 |
6311 |
6067 |
9103 |
8641 |
1579 |
9677 |
997 |
439 |
1699 |
6271 |
9643 |
8681 |
97 |
911 |
9199 |
6679 |
6907 |
617 |
5113 |
4871 |
9931 |
4219 |
2377 |
1117 |
8969 |
7963 |
5843 |
8369 |
9059 |
7219 |
3019 |
8867 |
2389 |
7481 |
5569 |
1019 |
2609 |
2969 |
1697 |
919 |
1289 |
3947 |
67 |
2339 |
5557 |
2791 |
4339 |
8461 |
2539 |
5923 |
2063 |
43 |
8737 |
5563 |
3943 |
2467 |
5011 |
3373 |
2657 |
2203 |
4441 |
6529 |
7507 |
6257 |
6869 |
2311 |
4783 |
6607 |
5347 |
2399 |
8819 |
4127 |
1423 |
9871 |
8513 |
5813 |
9689 |
1583 |
241 |
5749 |
3919 |
7457 |
1979 |
2903 |
1847 |
5531 |
5413 |
6037 |
8831 |
3517 |
4967 |
4159 |
5333 |
3299 |
3571 |
9749 |
3011 |
8311 |
283 |
5801 |
859 |
523 |
7351 |
4877 |
7867 |
4297 |
1439 |
1163 |
151 |
7727 |
9859 |
7237 |
1693 |
8467 |
599 |
5869 |
6389 |
2689 |
3733 |
2441 |
73 |
1483 |
5503 |
7027 |
8389 |
5209 |
1657 |
1721 |
4751 |
8669 |
3851 |
3049 |
449 |
3307 |
4447 |
6829 |
5021 |
7193 |
2797 |
3359 |
113 |
9187 |
7703 |
1879 |
1489 |
311 |
6343 |
7589 |
4423 |
7549 |
773 |
8447 |
4013 |
9511 |
8929 |
3331 |
9803 |
9491 |
2557 |
2861 |
491 |
1291 |
2179 |
5591 |
1871 |
9203 |
9661 |
5741 |
9403 |
4937 |
5273 |
5987 |
9343 |
1831 |
6269 |
431 |
317 |
6703 |
5737 |
823 |
5261 |
7673 |
83 |
461 |
3907 |
6983 |
4729 |
6571 |
269 |
5981 |
5417 |
4523 |
8231 |
3697 |
1753 |
7499 |
7937 |
6863 |
6481 |
101 |
3167 |
41 |
2843 |
1777 |
769 |
7873 |
347 |
1511 |
1487 |
4703 |
6151 |
6287 |
8161 |
6577 |
6217 |
2333 |
857 |
6361 |
4813 |
8893 |
9133 |
8779 |
5867 |
2293 |
3301 |
9029 |
6029 |
4657 |
8011 |
5297 |
1867 |
2459 |
71 |
1913 |
1907 |
1123 |
2017 |
1987 |
751 |
6221 |
929 |
13 |
2141 |
5431 |
4349 |
6841 |
1103 |
2917 |
4951 |
9377 |
8171 |
9209 |
9923 |
1999 |
2473 |
7639 |
8521 |
9227 |
5449 |
9041 |
3847 |
1109 |
6553 |
7919 |
2887 |
9337 |
6709 |
2531 |
4943 |
9829 |
677 |
5839 |
6619 |
7307 |
9421 |
3989 |
883 |
2371 |
1873 |
397 |
2633 |
6053 |
3673 |
6329 |
1381 |
3433 |
8663 |
5881 |
4001 |
8353 |
1277 |
1607 |
9011 |
3001 |
2707 |
5077 |
47 |
3323 |
9533 |
5167 |
7043 |
8237 |
4637 |
5581 |
601 |
4801 |
4789 |
541 |
2749 |
7331 |
2897 |
383 |
223 |
1361 |
2447 |
7741 |
6971 |
7243 |
5701 |
5501 |
5711 |
9839 |
2287 |
9601 |
733 |
1789 |
7001 |
1373 |
9781 |
5003 |
***
On July 01, 2016, Arkadiusz Wesolowski wrote:
Below are links to sequences giving magic sums of such
magic squares of order 3, 4, 5, and 6.
http://oeis.org/A270305
http://oeis.org/A173981
http://oeis.org/A176571
http://oeis.org/A177434
***
|