Problems & Puzzles:
Puzzles
Puzzle 2.- Prime strings
All the following numbers are primes :
(cutting by the right most digit)
73939133
7393913
739391
73939
7393
739
73
7
(cutting by the left most digit)
933739397
33739397
3739397
739397
39397
9397
397
97
7
Isnt it interesting that the both record strings grow from 7 ?
Can you produce other type of interesting and larger sequences ?
http://www.astro.virginia.edu/~eww6n/math/PrimeString.html
These are other strings I produced (19/07/98) following a
suggestion of Patrick De Geest: all of them are pal-primes using pal-primes of three
digits
383
313383313
353313383313353
757353313383313353757
383757353313383313353757383
383
313383313
353313383313353
757353313383313353757
929757353313383313353757929
919
101919101
151101919101151
131151101919101151131
181131151101919101151131181
919
101919101
151101919101151
131151101919101151131
919131151101919101151131919
Solution
Vas Danilov from Russia sent this string:
357686312646216567629137
He didn`t tell us but its a "cutting by the left most
digit" sequence and, by the way the largest possible of this type.
It seems that several people has found it before.
By example see the Caldwell Glossary entry for
"Left-truncatable primes" (http://www.utm.edu/research/primes/glossary/LeftTruncatablePrime.html).
There you can see that: "The three largest left-truncatable
primes are:
959 18918 99765 33196 93967
.(23 digits)
966 86312 64621 65676 29137
..(23 digits)
3576 86312 64621 65676 29137
..(24 digits)
who is (are) the author(s) of this sequences?
...
Today (12/July/98) I have just obtained this other prime-string:
"The Largest Palprime formed linking 3 digits-palprimes being
primes all
his sub-strings (cut by the left)"
797181191787191757191787101797 (30 digits)
181191787191757191787101797
191787191757191787101797
787191757191787101797
191757191787101797
757191787101797
191787101797
787101797
101797
797
***
Luke Pebody wrote (June 2005):
31-digit truncatable primes
6279821572756282163864793777199
8833367216294578819534799139337
8939662423123592347173339993799
can be truncated to single digit by combination of left-truncation and
right-truncation steps
***
Wilfred Whiteside wrote
on Dec. 2005:
I tried to beat the 31 digit left/right truncateable
Luke Peabody results (3 of them) posted for puzzle 2. My recursive
program spit out his same 3 numbers and there are no bigger solutions. He
was probably aware that there are no larger numbers of this type.
***
J. K. Andersen has come (January, 2006) with a
generalization of this puzzle:
Let p184 =
331767603936186381337518604730526923225433443498541534\
63216572933478421841663169727125215075424020614778993394696035966\
34858212099979878129094817736602146359724182316273512181213141511
Removing 2 digits at a time from the left end of p184 gives a sequence of
92 primes.
Let p1140 =
686957720511887558525174658414510840176432151923825981304948\
378237135960629558400414747213755738286767792781351488750517\
264488672424143774793266286770364857174294438649140883405465\
111650184405422520731603936126112798650690193956270492667782\
252202425468175747633902739432648860601275832729600906840482\
517851207730351684240852483171368592354596760617184207344771\
303768615441256104709615257106329207958857891370636668654226\
668627598741990159293937377616627380523797310848321354613345\
824936640519215403201542663630168337125631393644321198900751\
309897458118224375862155562138132204372567203408924412447426\
191762625165468828155675928128109122396184327504132254486363\
462573142336434187126453194249586173168628353985230306916320\
165307176186115255273138159294501491217530102244194102187144\
270207207114774123518132546106144140201166182339319824304125\
676185525801369789378639298750449400209313132470714271252396\
201303215168177114238260253260193102638141177189196377117229\
113172542190366267119229110112420351285173283143252142138105\
125265215598270147245157170100165362100128133129158132132180\
111172135104111124168102122154101132100107102106105101102101
Removing 3 digits at a time from the left end of p1140 gives a sequence of
380 primes.
More details at
http://hjem.get2net.dk/jka/math/left-truncatable.htm
***
|