Problems & Puzzles: Puzzles

 

Puzzle 830. Entry 1439 from Claudio Meller's site.

Claudio Meller asked to find on integer N than can be decomposed in n factors (not prime factors!) such that increasing on unit to each factor of N you get another integer M such that M=2016*N

Meller allowed to use unitary factors for N.

Accordingly a Puzzler, Mmonchi sent the following valid solution.

1x1x1x1x1x1x1x1x1x2x2x2x6=48=N
2x2x2x2x2x2x2x2x2x3x3x3x7=M=48x2016=N*2016

I proposed to solve the same puzzle but avoiding to use unitary factors for N.

Again Mmonchi sent the following solution:

2*2*2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*3*3*3*3*6=N
3*3*3*3*3*3*3*3*3*3*3*3*4*4*4*4*4*4*4*4*4*7=2016*N

Q1. Do you devise a strategy/algorithm in order to get these last kind of solutions for any M=K*N condition?

Q2. Send your minimal N solutions for K= 2012, 2013, ... 2017.


Contribution came from Emmanuel Vantieghem

***

Emmanuel wrote:

Here is my answer to question 2 :
 
   K                                               N
2012   2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*3*3*3*3*3*4*4*4*250*502 = 485664325632000
2013   2*2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*3*3*3*3*4*4*10*60 = 386983526400
2014   2*2*2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*3*3*3*3*12*18*52 = 905541451776
2015   2*2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*3*3*3*3*4*4*12*30 = 232190115840
2016   2*2*2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*3*3*3*3*6 = 483729408
2017   2*2*2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*3*3*3*3*6*2016 = 975198486528

I'm not 100% sure  N  is minimal.

***

 

Records   |  Conjectures  |  Problems  |  Puzzles