Problems & Puzzles: Puzzles

Puzzle 627. Nested Carmichael numbers

Fred Schneider sent the following nice puzzle:

Given a 3-factor Carmichael number, construct a four factor Carmichael number from the three factor given, then a five factors from the four factors, etc.

Example: The following are 4-nested Carmichael numbers

7*13*31
7*13*31*61
7*13*31*61*181
7*13*31*61*181*541

Q. Send your longest Carmichael nested chain.


Contributions came from Seiji Tomita, Jan van Delden, Emmanuel Vantieghem, Fred Schneider & Richard Pinch.

***

Seiji wrote:

8-nested Carmichael numbers,

7*13*31
7*13*31*61
7*13*31*61*181
7*13*31*61*181*541
7*13*31*61*181*541*2161
7*13*31*61*181*541*2161*187921
7*13*31*61*181*541*2161*187921*3570481
7*13*31*61*181*541*2161*187921*3570481*7140961

***

Jan wrote:

My contribution:
 
The given example can at least be extended to 14 terms:
 
7, 13, 31, 61, 181, 541, 2161, 187921, 3570481, 7140961, 31418238813121, 7728886748027521, 15457773496055041, 97615839627587577601
 
And can probably be extended even further [using a different ‘tail’].
 
I used Korselt’s criterion: n is a Carmichael number iff p|n implies p-1|n-1 and n is squarefree. Start with a Carmicahel number n, try to find m=n*p, p unequal to the prime factors of n, such that p-1|m-1 which amounts to p-1|n-1, construct m and test the prime divisors p[i] of n for p[i]-1|m-1 [or p[i]-1|m/p[i]-1].
 
I also investigated some emerging patterns and found the following article by Jack Chernick (april 1939) in which he calls these universal forms. In particular:
U[n]=(6k+1)(12k+1)(18k+1)..(2^(n-2).9k+1) which is a Carmichael number if all factors are prime, for instance if k=950560 we have n=9 factors. His theorem 4 is directly concerned with this puzzle.
 
However his method of finding these patterns is slightly different from mine:
 
Let m=p.q[1].q[2]..q[n-1], with p and the q[i] prime. If we choose q[i]=1 mod p-1 it’s easy to see that m-1=0 mod p-1. Let’s choose q[i]=a[i](p-1)+1 as a nontrivial simple way to achieve this.
We also must have q[i]-1|m-1 but q[i]-1=a(p-1) and m-1=(p-1)P(p) where P(p) is some polynomial in p. So a necessary and sufficient condition for the a[i] is that P(p)=0 mod a[i].
 
This condition translates to:
 
n=3
a[1]p+1=0 mod a[2]
a[2]p+1=0 mod a[1]
 
n=4
a[1]a[2]p(p-1)+p(a[1]+a[2])+1=0 mod a[3] (and the other 2 can be found by cycling the a[i]).
 
And will give the same results as mentioned in the article (choose appropriate values for a[i] and a condition on p will follow..).
 
In 1996 Günter Löh and Wolfgang Niebuhr published an article on finding large Carmichael numbers with lot’s of factors (rather technical), extending the work of H. Dubner (july 1989) and others.
 
A pratical guide to find 3-term Carmichael numbers (if I may say so) is found in Jameson.
 
It might also be interesting to read the article by Renaud Lifschitz who describes a set of Carmichael numbers C1, C2, ..Cn where each product of any number of these is also Carmichael, which he calls Nested Carmichael numbers.

***

Emmanuel wrote:

My longest chain consists of ten Carmichael numbers :
 
5*17*29
5*17*29*113
5*17*29*113*337
5*17*29*113*337*673
5*17*29*113*337*673*2689
5*17*29*113*337*673*2689*29569
5*17*29*113*337*673*2689*29569*3962113
5*17*29*113*337*673*2689*29569*3962113*2388178856449
5*17*29*113*337*673*2689*29569*3962113*2388178856449*30809895427035649
5*17*29*113*337*673*2689*29569*3962113*2388178856449*30809895427035649*4744723895763489793 

I think it is possible that longer chains exist (I cannot imagine a reason why not).

***

Fred wrote:

I found 3 cases but this is the smallest: MinSequence for 42 factors (whose product has 1169 digits)
 
41 *
61 *
101 *
601 *
4201 *
12601 *
126001 *
252001 *
504001 *
1008001 *
75600001 *
1058400001 *
7408800001 *
7505114400001 *
15010228800001 *
585398923200001 *
1170797846400001 *
9366382771200001 *
927271894348800001 *
19472709781324800001 *
240273765991766707200001 *
3165606866941526367360000001 *
205764446351199213878400000001 *
9876693424857562266163200000001 *
158027094797720996258611200000001 *
3634623180347582913948057600000001 *
25442362262433080397636403200000001 *
50884724524866160795272806400000001 *
661501418823260090338546483200000001 *
14553031214111721987448022630400000001 *
87318187284670331924688135782400000001 *
165729919466304289993058081714995200000001 *
12595473879439126039472414210339635200000001 *
1687793499844842889289303504185511116800000001 *
6816997945873320429839496853405279400755200000001 *
257409842436176579430739401184583350172516352000000001 *
45931697464626476480462277268574683838083472818176000000001 *
13320192264741678179334060407886658313044207117271040000000001 *
1940911855280039410867124610153980756110297507471797780480000000001*
128100182448482601117230224270162729903279635493138653511680000000001 *
256200364896965202234460448540325459806559270986277307023360000000001 *
512400729793930404468920897080650919613118541972554614046720000000001

I verified the primes numbers with several Miller-Rabin pseudoprime tests.

***

Richard wrote:

A quick search reveals an extension to the example given:

7*13*31*61*181*541*2161*187921*3570481*7140961*31418238813121*7728886748027521

***

 

Records   |  Conjectures  |  Problems  |  Puzzles