Problems & Puzzles: Puzzles

Puzzle 611. Puzzle 2-3-5-7.

Stephen Johnson and me constructed the following puzzle, which is a variation of some others constructed before out there of the same nature:

C1: Using at the most four of these decimal digits: 2, 3, 5 & 7 where repetitions are allowed & counted.

C2: Using any of these arithmetical six symbols: +, -, *, ^, ( & ) where repetitions are allowed & counted.

Q. Get all the numbers from 0 to X in its minimal expression (minimal quantity Q of digits & arithmetical symbols) and stop whenever you can not get X+1 following the conditions C1 & C2.

Valid examples: Follow the rules C1 & C2 and Q= minimal.

21=3*7, Q=3
13=3+3+5, Q=5
22=22, Q=2
24=3*7+3, Q=5

Invalid examples: Q is not minimal &/or fail at using C1 &/or C2.

13=22-3*3, Q=6, (Not minimal)
5=2+2+2/2, Q=7, (Not minimal & using an invalid arithmetical symbol)
24=2+3+5+7+7, Q=9, (Not minimal & using more than four prime integer)
4=4 Q=1, (Using an invalid integer)


Contributions came from Giovanni Resta, Claudio Meller, Hakan Summakoğlu.

***

All of them discovered that the first integer that can not be produced according to the rules given, is 179 and sent their respective expressions for the integers from 0 to 178.

It happened that the total sum of the symbols used in these integers from 0 to 178 is 774.

In their respective lists sent by the first time, Giovanni & Hakan used 775 symbols, while Claudio used 805 & Carlos Rivera used 809 symbols.

There are equivalent expressions for some integers that use the same quantity of symbols. For example: 20 = 23-3 = 22-2

This is one list using 174 symbols

n Q Expression
 0 3 2-2
 1 3 3-2
 2 1 2
 3 1 3
 4 3 2+2
 5 1 5
 6 3 3+3
 7 1 7
 8 3 2^3
 9 3 3^2
 10 3 2*5
 11 5 2^3+3
 12 3 5+7
 13 5 35-22
 14 3 7+7
 15 3 3*5
 16 4 23-7
 17 4 22-5
 18 4 23-5
 19 4 22-3
 20 4 23-3
 21 3 3*7
 22 2 22
 23 2 23
 24 4 2+22
 25 2 25
 26 4 33-7
 27 2 27
 28 4 33-5
 29 4 22+7
 30 4 32-3
 31 4 33-2
 32 2 32
 33 2 33
 34 4 32+2
 35 2 35
 36 4 33+3
 37 2 37
 38 4 33+5
 39 4 32+7
 40 4 33+7
 41 5 73-32
 42 4 37+5
 43 5 75-32
 44 4 2*22
 45 4 52-7
 46 4 2*23
 47 4 52-5
 48 4 55-7
 49 3 7*7
 50 4 2*25
 51 4 53-2
 52 2 52
 53 2 53
 54 4 2*27
 55 2 55
 56 4 3+53
 57 2 57
 58 4 3+55
 59 4 2+57
 60 4 5+55
 61 6 22*3-5
 62 4 5+57
 63 5 3*3*7
 64 4 2*32
 65 4 72-5
 66 4 2*33
 67 4 72-5
 68 4 73-5
 69 4 23*3
 70 4 2*35
 71 4 73-2
 72 2 72
 73 2 73
 74 4 2*37
 75 2 75
 76 4 73+3
 77 2 77
 78 4 73+5
 79 4 77+2
 80 4 77+3
 81 4 3*27
 82 4 77+5
 83 6 3+7+73
 84 4 7+77
 85 5 33+52
 86 5 33+53
 87 5 55+32
 88 5 33+55
 89 5 57+32
 90 5 35+55
 91 6 2*7+77
 92 5 35+57
 93 6 2^7-35
 94 5 22+72
 95 5 22+73
 96 4 3*32
 97 5 25+72
 98 5 2*7*7
 99 4 3*33
100 5 25+75
101 6 2^7-27
102 5 27+75
103 6 3*32+7
104 4 2*52
105 4 3*35
106 4 2*53
107 5 55+52
108 5 55+53
109 5 57+52
110 4 2*55
111 4 3*37
112 5 55+57
113 6 2+3*37
114 4 2*57
115 4 23*5
116 6 3*37+5
117 6 2*55+7
118 5 5^3-7
119 6 5+2*57
120 5 5^3-5
121 5 2^7-7
122 5 5^3-3
123 5 2^7-5
124 5 72+52
125 3 5^3
126 5 2^7-2
127 5 5^3+2
128 3 2^7
129 5 77+52
130 5 5^3+5
131 5 2^7+3
132 5 5^3+7
133 5 2^7+5
134 5 77+67
135 4 5*27
136 7 2^7+2^3
137 6 2+27*5
138 6 2*3*23
139 6 2*73-7
140 6 2*2*35
141 6 2*72-3
142 6 27*5+7
143 6 2*73-3
144 4 2*72
145 5 72+73
146 4 2*73
147 5 3*7^2
148 5 73+75
149 5 77+72
150 4 2*75
151 6 2^7+23
152 5 75+77
153 6 2^7+25
154 4 2*77
155 6 5+2*75
156 4 3*52
157 6 32+5^3
158 6 33+5^3
159 4 3*53
160 4 32*5
161 4 7*23
162 6 2+32*5
163 6 2^7+35
164 6 5+3*53
165 4 55*3
166 6 3^5-77
167 6 2+33*5
168 6 3+33*5
169 6 3*57-2
170 6 3^5-73
171 4 3*57
172 6 7+5*33
173 6 2+3*57
174 6 3*57+3
175 4 5*35
176 6 5+3*57
177 6 5^3+52
178 6 3+35*5

***

 

 

 

Records   |  Conjectures  |  Problems  |  Puzzles