Problems & Puzzles:
Puzzles
Puzzle
560.-
Same quantity of prime factors
JM Bergot sent the following puzzle:
See this: Adding two consecutive prime
factors you get:
Three sums, Three factors
3+5 = 8 = 2*2*2
5+7 = 12 = 2*2*3
7+11 = 18 = 2*3*3
11+13 = 24 = 2*2*2*3 (fail)
Three sums, Four factors
41+43 = 84 = 2*2*3*7
43+47 = 90 = 2*3*3*5
47+53 = 100 = 2*2*5*5
53+59 = 112 = 2*2*2*2*7 (fail)
Q. Can there be
more than three of these sums having on the right the same quantity of
factors?

Contributions came from: Torbjörn Alm, Dan Dima, Jan van
Delden, Jeff Heleen, Seiji Tomita, Fred Schalekamp, JC Rosa & Emmanuel
Vantieghem, Farid Lian.
***
Torbjörn Alm wrote:
Sum count: 4 Factors: 4
571+577 = 1148 = 2*2*7*41
577+587 = 1164 = 2*2*3*97
587+593 = 1180 = 2*2*5*59
593+599 = 1192 = 2*2*2*149
Sum count: 5 Factors: 4
11593+11597 = 23190 = 2*3*5*773
11597+11617 = 23214 = 2*3*53*73
11617+11621 = 23238 = 2*3*3*1291
11621+11633 = 23254 = 2*7*11*151
11633+11657 = 23290 = 2*5*17*137
Sum count: 6 Factors: 4
9811+9817 = 19628 = 2*2*7*701
9817+9829 = 19646 = 2*11*19*47
9829+9833 = 19662 = 2*3*29*113
9833+9839 = 19672 = 2*2*2*2459
9839+9851 = 19690 = 2*5*11*179
9851+9857 = 19708 = 2*2*13*379
Sum count: 7 Factors: 5
498361+498367 = 996728 = 2*2*2*23*5417
498367+498391 = 996758 = 2*7*7*7*1453
498391+498397 = 996788 = 2*2*13*29*661
498397+498401 = 996798 = 2*3*11*11*1373
498401+498403 = 996804 = 2*2*3*3*27689
498403+498409 = 996812 = 2*2*17*107*137
498409+498439 = 996848 = 2*2*2*2*62303
***
Dan Dima wrote:
Seven sums, Four factors
9803+9811 = 19614 = 2*3*7*467
9811+9817 = 19628 = 2*2*7*701
9817+9829 = 19646 = 2*11*19*47
9829+9833 = 19662 = 2*3*29*113
9833+9839 = 19672 = 2*2*2*2459
9839+9851 = 19690 = 2*5*11*179
9851+9857 = 19708 = 2*2*13*379
9857+9859 = 19716 = 2*2*3*31*53 (fail)
I see no reason to get a bound for the number of sums
having the same number of factors (as it seems there is no bound for the
number of factors of such a sum).Twelve sums,
Six factors
1630324763+1630324777 = 3260649540 = 2*2*3*5*4297*12647
1630324777+1630324793 = 3260649570 = 2*3*5*53*977*2099
1630324793+1630324799 = 3260649592 = 2*2*2*61*631*10589
1630324799+1630324807 = 3260649606 = 2*3*17*151*269*787
1630324807+1630324823 = 3260649630 = 2*3*5*7*7*2218129
1630324823+1630324831 = 3260649654 = 2*3*3*3*3*20127467
1630324831+1630324853 = 3260649684 = 2*2*3*29*1217*7699
1630324853+1630324903 = 3260649756 = 2*2*3*7*13*2985943
1630324903+1630324921 = 3260649824 = 2*2*2*2*2*101895307
1630324921+1630324951 = 3260649872 = 2*2*2*2*67*3041651
1630324951+1630324991 = 3260649942 = 2*3*3*11*379*43451
1630324991+1630325029 = 3260650020 = 2*2*3*5*83*654749
1630325029+1630325033 = 3260650062 = 2*3*23*1039*22741 (fail)
Here is the smallest first prime in a series that produces at least k
such sums:
k p-prime
3 3
4 571
5 9803
6 9803
7 9803
8 959659
9 20692817
10 188088421
11 1173258563
12 1630324763
and the smallest first prime in a series that produces exactly k such
sums
(only for k=7 sums the sequence is not increasing and for k=5,6 the
sequences differ):
k p-prime
3 3
4 571
5 11593
6 34651
7 9803
8 959659
9 20692817
10 188088421
11 1173258563
12 1630324763
***
Jan van Delden wrote:
#sums #factors first prime
1 1 2
2 3 19
3 3 3
4 4 571
5 4 11593
6 4 34561
7 4 9803
8 5 959659
9 4 20692817
10 5 188088421
***
Jeff Heleen wrote:
For puzzle 560 I have found the following:
No. of Sums = 3
No. of start end
factors prime prime
3 3 11
4 41 53
5 337 353
6 1019 1033
7 13553 13591
8 113933 113963
9 816961 817027
10 9311503 9311569
No. of Sums = 4
No. of start end
factors prime prime
3 1511 1549
4 571 599
5 1637 1669
6 19681 19709
7 154591 154643
8 7260511 7260553
9 12906937 12907007
10 96697177 96697273
No. of Sums = 5
No. of start end
factors prime prime
3 134741 134837
4 11593 11657
5 22147 22189
6 508513 508567
7 251761 251833
8 5306219 5306311
9 182247743 182247827
10 none less than 2^32
No. of Sums = 6
No. of start end
factors prime prime
3 1081441 1081631
4 34651 34703
5 135841 135911
6 636241 636287
7 21721717 21721787
8 656158313 656158397
9 none less than 2^32
10 none less than 2^32
No. of Sums = 7
No. of start end
factors prime prime
3 46341601 46341791
4 9803 9857
5 498361 498439
6 6350353 6350471
7 78271847 78271979
8 3681644779 3681644921
9 none less than 2^32
10 none less than 2^32
No. of Sums = 8
No. of start end
factors prime prime
3 none less than 2^32
4 4702349 4702433
5 959659 959773
6 42079441 42079549
7 305563331 305563417
8 none less than 2^32
9 none less than 2^32
10 none less than 2^32
No. of Sums = 9
No. of start end
factors prime prime
3 none less than 2^32
4 20692817 20693039
5 47117647 47117857
6 24870017 24870161
7 3922410389 3922410617
8 none less than 2^32
9 none less than 2^32
10 none less than 2^32
No. of Sums = 10
No. of start end
factors prime prime
3 none less than 2^32
4 286363937 286364077
5 188088421 188088617
6 218545751 218545919
7 none less than 2^32
8 none less than 2^32
9 none less than 2^32
10 none less than 2^32
***
Seiji Tomita wrote:
Smallest twelve sums that having same quantity of prime
factors.
1630324763+1630324777 = (2)^2*(3)*(5)*(12647)*(4297)
1630324777+1630324793 = (2)*(3)*(5)*(53)*(977)*(2099)
1630324793+1630324799 = (2)^3*(61)*(631)*(10589)
1630324799+1630324807 = (2)*(3)*(17)*(151)*(269)*(787)
1630324807+1630324823 = (2)*(3)*(5)*(7)^2*(2218129)
1630324823+1630324831 = (2)*(3)^4*(20127467)
1630324831+1630324853 = (2)^2*(3)*(29)*(1217)*(7699)
1630324853+1630324903 = (2)^2*(3)*(7)*(13)*(2985943)
1630324903+1630324921 = (2)^5*(101895307)
1630324921+1630324951 = (2)^4*(67)*(3041651)
1630324951+1630324991 = (2)*(3)^2*(11)*(379)*(43451)
1630324991+1630325029 = (2)^2*(3)*(5)*(83)*(654749)
***
Fred Schalekamp wrote:
Four sums, Nine factors
12906937 + 12906953 = 25813890
12906953 + 12906967 = 25813920
12906967 + 12906977 = 25813944
12906977 + 12907007 = 25813984
Five sums, Eight factors
5306219 + 5306221 = 10612440
5306221 + 5306267 = 10612488
5306267 + 5306293 = 10612560
5306293 + 5306309 = 10612602
5306309 + 5306311 = 10612620
Six sums, Seven factors
21721717 + 21721723 = 43443440
21721723 + 21721727 = 43443450
21721727 + 21721741 = 43443468
21721741 + 21721747 = 43443488
21721747 + 21721781 = 43443528
21721781 + 21721787 = 43443568
Seven sums, Seven factors
78271847 + 78271889 = 156543736
78271889 + 78271903 = 156543792
78271903 + 78271913 = 156543816
78271913 + 78271943 = 156543856
78271943 + 78271951 = 156543894
78271951 + 78271969 = 156543920
78271969 + 78271979 = 156543948
Eight sums, Six factors
42079441 + 42079451 = 84158892
42079451 + 42079459 = 84158910
42079459 + 42079481 = 84158940
42079481 + 42079483 = 84158964
42079483 + 42079501 = 84158984
42079501 + 42079507 = 84159008
42079507 + 42079511 = 84159018
42079511 + 42079549 = 84159060
Nine sums, Six factors
24870017 + 24870059 = 49740076
24870059 + 24870073 = 49740132
24870073 + 24870077 = 49740150
24870077 + 24870103 = 49740180
24870103 + 24870113 = 49740216
24870113 + 24870119 = 49740232
24870119 + 24870137 = 49740256
24870137 + 24870143 = 49740280
24870143 + 24870161 = 49740304
***
JC Rosa wrote:
I have found solutions for 4,5,6,7 and 8 sums having the
same
quantity of factors. Here is my best result :
959659+959677=1919336=2*2*2*29*8273
959677+959681=1919358=2*3*3*7*15233
959681+959689=1919370=2*3*5*137*467
959689+959719=1919408=2*2*2*2*119963
959719+959723=1919442=2*3*7*23*1987
959723+959737=1919460=2*2*3*5*31991
959737+959759=1919496=2*2*2*3*79979
959759+959773=1919532=2*2*3*19*8419
***
Emmanuel Vantieghem wrote:
Let F(t) = the number of primefactors of t, counted
with multiplicity (usually called ‘the big omega’ of t).
For several values of k, I found sequences
of k consecutive primes p(m+1), p(m+2), ... , p(m+k) such that
the k-1 numbers F(p(m+j)+p(m+j+1)) ( j = 1, 2, ... , k-1) were all the
same.
The smallest value for p(m+1) was equal to
3 when k = 3
571 when k = 4
9803 when k < 8
959659 when k = 8
20692817 when k = 9
188088421 when k = 10
1173258563 when k = 11
1630324763 when k = 12
When k = 13, the smallest p(m+1) must be bigger than
2*10^9.
I think there is a good reason why there exist
an m for every value of k. Indeed, if t is smaller than 2^N, then F(t)
< N. So, for suitable N, the k-1 -tuple
( F(p(m+1)+p(m+2)),
F(p(m+2)+p(m+3)), ... , F(p(m+k-1)+p(m+k)) ) (*)
will look like a k-1 –tuple of randomly chosen numbers
from the interval [2,N-1]. The number of such k-1 –tuples
is (N-2)^(k-1), whence the probability that all the elements are the
same is 1 / (N-1)^(k-2). This is very small, but enough for ‘Murphy’s
law’. Besides, the number of k-1 –tuples of the form (*) is as great
as there are prime numbers < 2^N and that increases the probability.
***
Farid wrote:
last prime # (k) |
first prime |
last prime |
# of sums |
# factors |
3 |
3 |
5 |
1 |
3 |
4 |
3 |
7 |
2 |
3 |
5 |
3 |
11 |
3 |
3 |
109 |
571 |
599 |
4 |
4 |
1,214 |
9,803 |
9,839 |
5 |
4 |
1,215 |
9,803 |
9,851 |
6 |
4 |
1,216 |
9,803 |
9,857 |
7 |
4 |
75,601 |
959,659 |
959,773 |
8 |
5 |
1,311,759 |
20,692,817 |
20,693,039 |
9 |
4 |
10,455,221 |
188,088,421 |
188,088,617 |
10 |
5 |
59,175,242 |
1,173,258,563 |
1,173,258,763 |
11 |
6 |
80,881,875 |
1,630,324,763 |
1,630,325,029 |
12 |
6 |
1,116,236,010 |
25,580,875,711 |
25,580,875,937 |
13 |
5 |
1,116,236,011 |
25,580,875,711 |
25,580,875,939 |
14 |
5 |
***
|