Problems & Puzzles: Puzzles

Puzzle 530. Twins pointing to equidistant trios

Let's suppose we have a pair of twins primes (p, p+2).

Now let's use them as indexes. This way we get the following two primes: prime(p) & prime(p+2) which implicitly suppose the inner prime prime(p+1), and thus a trio of primes.

¿How often the trio of primes thus formed are equidistant and how far they can be in the trio?

I have gotten the smallest examples for trio primes distances 6 & 12:

p p+2 prm(p) prm(p+1) prm(p+2) x
107 109 587 593 599 6
239 241 1499 1511 1523 12
next?         ?

 Q. Can you send the smallest case for larger x-values?

 

 

Contributions came from Torbjörn Alm (x<=48), J-C Colin (x<=90), Antoine Verroken (x<=48), Farid Lian (x<=96), Farideh Firoozbakht (x<=102 & a proof), J.K. Andersen (x<=216)

***

Farideh wrote:

Please consider the following statement as my contribution for this puzzle.

" The smallest prime p for x = 6k, k = 1, 2, ..., 17 are respectively
107, 239, 51719, 90071, 82757, 792227, 1673279, 724781, 5571149, 12292391,
15251777, 21625061, 59676821, 60932999, 46985747, 105238871 & 218472767. "

...

She wrote about why x is a multiple of 6:

Yes, since x is even, we have three cases x=6k+2 , x=6k+4 & x=6k .

1. x=6k+2 : In this case we have two cases prm(p)=3k'+1 or prm(p)=3k'+2 .

If prm(p)=3k'+1 then prm(p+1)=3k'+1+x=3k'+1+6k+2=3(k'+2k+1) so 3 divides
prm(p+1) which is impossible.

If prm(p)=3k'+2 then prm(p+2)=3k'+2+2x=3k'+2+2(6k+2)=3(k'+4k+2) so 3 divides prm(p+2) which is impossible.

2. x=6k+4 : In this case we have two cases prm(p)=3k'+1 or prm(p)=3k'+2 .

If prm(p)=3k'+1 then prm(p+2)=3k'+1+2x=3k'+1+2(6k+4)=3(k'+4k+3) so 3 divides prm(p+2) which is impossible.

If prm(p)=3k'+2 then prm(p+1)=3k'+2+x=3k'+2+6k+4=3(k'+2k+2) so 3 divides
prm(p+1) which is impossible.

Hence x cannot be of the forms 6k+2 or 6k+4. So the only possible case is x=6k  and the proof is complete.
 

***

Andersen wrote:

p prm(p) x
107 587 6
239 1499 12
51719 635003 18
90071 1160519 24
82757 1058891 30
792227 12067751 36
1673279 26833577 42
724781 10971743 48
5571149 96496979 54
12292391 223260823 60
15251777 280499551 66
21625061 405722197 72
59676821 1183743023 78
60932999 1210004753 84
46985747 920126959 90
105238871 2150518397 96
218472767 4632520727 102
2455300511 58295054821 108
 
p prm(p) x
1498852841 34812231409 114
1826163461 42791999363 120
4169166767 101294810657 126
2609351399 62118833507 132
4672485107 114080304691 138
8201143019 205051764989 144
4144782197 100676987581 150
9849272429 248141843777 156
40985013239 1093465976429 162
16160665949 415496509471 168
59137642829 1600331947583 174
64250122721 1744222494143 180
63672555809 1727944666961 186
112083564491 3107608139359 192
155148609881 4354025197733 198
246682314419 7041548322169 204
206931015671 5869105501471 210
93971514269 2588225060021 216
The search is exhaustive for prm(p) < 2*10^13. The tables omit p+2, prm(p+1) = prm(p)+x, and prm(p+2) = prm(p)+2*x.

 

 

Records   |  Conjectures  |  Problems  |  Puzzles