I have calculated the earliest integer having k
distinct primes embedded, for 1<=k<=30. Here are my results
(see
A093301
)
:
k |
Qty. of primes |
1 |
2 |
2 |
13 |
3 |
23 |
4 |
113 |
5 |
137 |
6 |
1131 |
7 |
1137 |
8 |
1373 |
10 |
11317 |
11 |
23719 |
12 |
111317 |
13 |
113171 |
14 |
211373 |
15 |
1113171 |
16 |
1113173 |
17 |
1317971 |
18 |
2313797 |
19 |
11131733 |
20 |
11317971 |
21 |
13179719 |
23 |
52313797 |
24 |
113179719 |
25 |
113733797 |
26 |
523137971 |
27 |
1113173331 |
28 |
1131797193 |
29 |
1797193373 |
30 |
2113733797 |
For example: 137 is the earliest number that has
embedded 5 distinct primes: 3, 7, 13, 37 & 137.
Questions
1. Can you predict the
quantity of digits of the smallest number having embedded k distinct primes?
2. According with your
prediction (or without any prediction at all) can you find a number having
a) 100 b) 500 distinct primes embedded?
Solution:

Contributions came from Ray Opao and
Faride Firoozbakht.
Ray Opao wrote:
1. If letters represent digits, then the following
are the maximum possible imbedded primes: digits number primes k
1 a a 1
2 ab a,b,ab 3
3 abc a,b,c,ab,bc,abc 6
4 abcd a,b,c,d,ab,bc,cd,abc,bcd,abcd 10
5 abcde a,b,c,d,e,ab,bc,cd,de,abc,bcd,cde,abcd,bcde,abcde 15
etc etc etc etc
if n represents the number of digits, then k <=
(n^2+n)/2 using the quadratic formula: n >= (2k+.25)^.5-.5
2.a. if k = 100, then n >= 13.7 The number with 100
distinct primes has at least 14 digits, but I haven't found that number
yet.
2.b. if k = 500, then n >= 31.1 The number with 500
distinct primes has at least 31 digits, but I also haven't found this
number.
***
Faride wrote:
Answer to Q.2: I found many numbers with 100 or 500
distinct embedded primes , the smallest of those for k=100 is a 35-digit
number n1 and for k=500 is a 139-digit number n2,
n1= 135793793791919137371711311331397173931359379
(35-digit)
n2= 91813183113113111113111119111111191131117119311/
19131979731537911379371937918759137371711397973/
135793793791919137371711311331397173931359379 (139-digit)
Can you find smaller numbers which having embedded
100 or 500 distinct primes?
***
Faride Firoozbakht has found the earliest
integer having exactly 9 and 22 embedded primes:
A093301(9)=101317
A093301(22)= 82337397
***
Faride also sent the following contribution to
my request ("Can you improve the approximation give by Opao?"):
If f(n) is the largest number of embedded distinct
primes of a n-digit number I think an approximation for f(n) which is
better than sum(j, {j,1,n})=n(n+1)/2 regarding to Prime Number Theorem is
ceiling(sum(j/log(j), {j,2,n})).
Let, g1(1)=1, g1(n)=ceiling( sum(j/log[j], {j,2,n}))
(for n > 1) , so I think, " A n-digit number embedded at most g1(n)
distinct primes. "
(I) I couldn't find a counter example for this
statement.
g1(n) for n=1,2,...,65 :
1,3,6,9,12,15,19,23,27,31,36,41,46,51,57,62,68,
75,81,88,95,102,109,117,124,132,141,149,158,166
,176,185,194,204,214,224,234,244,255,266,277,288
,300,311,323,335,347,360,372,385,398,411,425,438
,452,466,480,494,509,523,538,553,568,584,599
For example a number which embedded 100 distinct
primes has at least 22 digits because g1(21)=95 & g1(22)=102 and a number
which embedded 500 distinct primes has at least 59 digits because
g1(58)=494 & g1(59)=509.
Let g2(m) be number of distinct embedded primes of
m. I could find numbers m ,which g2(m)= 100,200,300,...,1000. Here are
such numbers m with smallest number of digits, (that I could find ):
m1 (27-digit) g2(m1)=100, m2 (49-digit) g2(m2)=200
m3 (70-digit) g2(m3)=300, m4 (89-digit) g2(m4)=400
m5 (107-digit) g2(m5)=500, m6 (127-digit) g2(m6)=600
m7 (143-digit) g2(m7)=700, m8 (160-digit) g2(m8)=800
m9 (177-digit) g2(m9)=900, m10 (192-digit) g2(m10)=1000
m1= 179719337391131771739397731 (27-digit) g2(m1)=100
m5=
28187696823241434725761797193373911317717393977317791
733113933197137313779397911717737397191199733379371333 (107-digit)
g2(m5)=500
m10=
1818769682324143472576179719337391131771739397731779
1733113933197137313779397911717737397191199733379379
3397799133999139373991311971711937993939191337331193
113997719991117319133911711177773173(192-digit) g2(m10)=1000.
According to my empirical results I guess that:
" f(n)< 6*n " (II)
Opao proved that f(n)<= 1/2*n*(n+1).
(II) implies g2(m) < 6/Ln(10)*log(10*m) (III).
***
On August 14, 2002, Paul Cleary wrote:
Here’s an update for puzzle 265.
Q2.
My smallest Number with 100 embedded primes is the 26 digit
35635993719333131977733179.
My smallest Number with 500 embedded primes is the 101 digit
11578881197649463622943665892313797193373911179173333131991314779337973371339199
977399293939737931139.
My smallest Number with 1000 embedded primes is the 180 digit
174219547888119764946362294366589231379719337391117917333313199131477933797337133
919997739929393973793113599934937679713971313999939791111913391911117793193179193
799713173197137799.
Later the same day he continued:
A slight update on Puzzle 265.
The smallest number with 100 embedded primes is this 26 digit number.
21393861654799733311933739
and smallest Number with 500 embedded primes is the 101 digit number.
1157888119764946362294366589231379719337391117917333313199131477933797337133919997
7399293939737931139.
and smallest Number with 1000 embedded primes is the 180 digit number.
17421954788811976494636229436658923137971933739111791733331319913147793379733713391
99977399293939737931135999349376797139713139999397911119133919111177931931791937997
13173197137799