Problems & Puzzles:
Puzzles
Puzzle 244. Null
Conjunction
Probably you already know that:
2^168 =
374144419156711147060143317175368453031918731001856.
Please notice that the decimal
expansion of 2^168 contains no one single "2".
This lead me to ask myself for these
numbers N that exhibit a null conjunction between
the set of the digits in the decimal expansion of N and the set of the
digits present in all the prime factors of N.
Other example & general model that I
have devised is this one:
N=(6n7)^2=4n+18n9,
for these n such that 6n7 is prime
(one large case is n=5812; for this n value 6n7
is nowadays only a probable prime; in any case N is 11626 digits long)
One last example and general mode
that I have devised is the following one:
N=k.(6n7),
for some selected k values as 2, 3, 12, 14 & 20 and these n such that 6n7
is prime
Questions:
a) Are there infinite of
these numbers N?
b) Can you find other models
and larger examples
Solution:

Solutions were gotten by J. K.
Andersen, Phil Carmody, Faride Firoozbakht and Luke Pebody.
***
Question a)
Andersen, Carmody and Firoozbakht
found that there are infinite of these numbers because the following
model: 10^n = 2^n.5^n
Andersen wrote:
10^n = 2^n*5^n works for all n.
If N is a solution without digits 2 or 5, and there
are no 0's in the prime factorization of N, then N*10^n is also a
solution. The first general example works as N.
(Follow up
1, CR):
Is there a model other than 10^n = 2^n.5^n on which
you can support the infiniteness
non-heuristic
claim?
Pebody wrote:
There ought to be infinitely many prime numbers all
of whose digits are 3 or 4. ... (because) The number of primes with n
digits all of whom are 3 and 4 has the expectation 2^n/log(10^n)>1.99^n.
Multiply any such number by 2
Faride's another contribution
to this question in between her contribution to Question b)
***
Question b)
Carmody wrote:
I'm sure everyone will head down the "pattern"
route, however, the pattern route is a motorway to infinity(*) so I think
I'll try to just find coincidences instead!
The largest powers of small primes: (ones <10^6 not
included)
2^168
374144419156711147060143317175368453031918731001856
3^84 11972515182562019788602740026717047105681
7^39 909543680129861140820205019889143
13^6 4826809
37^14 9012061295995008299689
43^8 11688200277601
53^4 7890481
59^8 146830437604321
67^4 20151121
73^8 806460091894081
89^4 62742241
157^3 3869893
223^3 11089567
233^8 8686550888106661441
263^3 18191447
353^8 241100240228887100161
383^4 21517662721
487^3 115501303
577^3 192100033
587^3 202262003
739^4 298248146641
773^4 357040905841
823^3 557441767
839^4 495504774241
877^10 269150960295439095031490496649
887^4 619005459361
977^4 911125611841
and select others:
2213^6 117459590807554494409
7757^7 1689882622864926680809344293
Notice how many of those maxima are at powers which
are multiples of 4 (168,84, a few 8s and many 4s).
(Follow-up 2, PC)
There _is_ a reason for this
bias, I wonder if others would like to puzzle what it might be. ;-)
However, one can combine small primes that share at
no extra cost to get a few more stabs at finding coincidences:
6^18 101559956668416
1454^4 4469486461456
1047^5 1258152857750007
9771^4 9114986990498481 (4 digits excluded)
10029^4 10116505576267281
10401^3 1125188511201 (4 digits excluded)
10599^4 12620006210117601
13119^4 29621219082801921
511^8 4649081944211090042881
5299^6 22139281232164381318201
8309^5 39604432524450440549
143^6 8550986578849
5359^5 4419964540656090799
369001^5 6841285512441040451611845001
18619^4 120178120515799921
4183^4 306162121305121
22513^4 256881888535258561
542609^4 86685802029100691588161
Not particularly impressive, but quite fun
nonetheless. I particularly like the 10401^4 one, restricted to 6 digit,
and 10401 being a palindrome.
***
Faride wrote:
I found several models, which one of them is the
most interesting.
The most interesting model [almost pandigital when
m>=n, CR]:
3(m).5.3(n)^2 = 1(m)2.4(m)8.4(n-m-1).2(m)0.8(n-1).9
( for m < n )
3(m).5.3(n)^2 = 1(m).2.4(n).2(m-n).6.2(n-1).0.8(n-1).9 ( for m >= n )
Examples :
3(3).5.3(5) = 333533333 , 3(3).5.3(5)^2 =
111244484222088889
3(7).5.3(4) = 333333353333 , 3(7).5.3(4)^2 = 111111124444222622208889
Answer to part (a) :
Let f(m,n) = 3(m).5.3(n) ( m & n are non negative
integers ), it seems that for each m there exist at least one n such that
f(m,n) is prime, but so if this is true there exist infinite numbers N .
Other models :
3(n).77 ^2 = 1(n).40.2(n-2).4129
6(n).77 ^2 = 4(n).58.2(n-1).329
5.6(n).77 ^2 = 32.1(n-1).228.2(n-1).329
5.6(n).7 ^2 = 32.1(n).4.8(n).9
5.3(n).77 ^2 = 28.4(n-1).910.2(n-2).4129
6(n).73 ^2 = 4(n).52.8(n-1).929
Later she added:
N= f(7000,664)^2 is the largest N that I found.
Since, N= 1(7000).2.4(664).2(7000-664).6.2(664-1).0.8(664-1).9 ,
(f(m,n)^2=1(m).2.4(n).2(m-n).6.2(n-1).0.8.(n-1).9 for m >= n)) N is 15330
digits long.
Another interesting model :
77.3(n).77 ^2 = 5980.4(n-3).51198.2(n-2).4129 (n >
2)
I also found four interesting
[pandigital, CR] models with
further property that the union of the set of the digits in the
decimal expansion of N and set of the digits present in all the prime
factors of N is equal to {0,1,...,9}.
The four interesting models:
Let, s(m,n) be 77.3(m).6.3(n).77
s(m,m-2)^2 =
5980.4(m-2).908.4(m-5).511991.2(m-3).484.2(m-4).4129 (m > 4)
s(m , m)^2 = 5980.4(m-2).908.4(m-3).51288 .2(m-2).484.2(m-2).4129 (m >2)
s(m,m+1)^2 = 5980.4(m-2).908.4(m-2).52098 .2(m-2).484.2(m-1).4129 (m > 1)
s(m,m+3)^2 = 5980.4(m-2).908.4(m-1).541198.2(m-2).484.2(m+1).4129 (m > 1)
s(64,62)^2 , s(76,76)^2 , s(302,303)^2 & s(74,77)^2
are respectively the smallest N of the forms s(m,m-2)^2, s(m,m)^2,
s(m,m+1)^2 & s(m,m+3)^2 .
Examples:
s(6,4)= 773333336333377 , s(6,4)^2 =
598044449084511991222484224129
s(4,4)= 7733336333377 , s(4,4)^2 = 59804490845128822484224129
s(5,6)= 7733333633333377 , s(5,6)^2 = 59804449084445209822248422224129
s(4,7)= 7733336333333377 , s(4,7)^2 = 59804490844454119822484222224129
(Follow up 3, FF)
Can you find other such
models?
***
Luis Rodríguez added to the Faride's work:
In relation to Firoozbakht Conjecture in puzzle
244, I think its true but indecidable in this century. She says:"Let f(m,n)=
3(m).5.3(n), for each integer m there exists at least one n such that
f(m,n) is a prime number."
3(m).5.3(n) means :
(10^m-1)x10^(n+1)/3 + 5x10^n +(10^n - 1)/3
I verified the conjecture for m =1 to 30, only with m=28 I
could not find a solution. For m =1,2,3,..,30 the corresponding n were:
1,2,1,3,6,9,10,18,13,33,12,9,8,6,3,28,2,7,2,7,2,8,26,1,14,3,50,??,7,83
***
On return Faride wrote:
The smallest solution For each m (m=1,2,...,100) are as follows:
1,2,1,3,6,9,10,18,13,33,12,9,2,5,3,28,2,7,2,8,26,1,14,3,13,3,50,
118,7,83,8,48,290,19,1,235,22,4,61,49,19,207,19,84,99,217,48,12,
14,183,1,63,61,17,28,738,6,60,18,48,1,3,14,19,9,29,2,9,8,9,36,24
,351,17,2174,54,70,11,15,10,72,1,62,123,166,135,333,145,16,13,21
,8,2,174,13,18,35,105,12,43.
***
Luis Rodríguez wrote to
Faride the following email and I got a copy of it with the following
heading lines:
Don Carlos
Esta es la carta que le acabo de enviar a Farideh,
para mostrarle que su conjetura es bastante natural que se cumpla por
razones heurísticas.
Dear Professor Farideh
Following your idea I found another sequence. In this
case beginning with 3's and continuing with 1's. So :
31,331,3331,33331,333331,3333331,33333331,
3333333311111,33333333311111....etc
(Observe that for the first seven cases only one
1 was necessary)
The formula is: 10^n*(10^m - 1)/3 + (10^n - 1)/9
For the twenty first cases the necessary ones are:
1, 1, 1, 1, 1, 1, 1, 5, 5, 37, 8, 35, 7, 13, 8, 19,
1, 89, 34, 74
I suspect that this sequence, as yours, can continue
indefinitely producing primes.
I replied with a single line "what are
those heuristic reasons?". Rodríguez replied to me this:
En relación con las razones heurísticas de porqué la
sucesión de Farideh puede producir primos indefinidamente, hasta ahora
tengo las siguientes:
1.- El permitir que la búsqueda se prolongue
indefinidamente. Por ejemplo para m = 56 se necesitó un n= 753 y no se
sabe si llegará un momento cuando el algoritmo de primalidad usado no
permita seguir adelante.
2.- Como la forma general de esos números es
3*(10^(m+n+1) - 1)/9 +
2*10^n = N = 3xA + B. (A siendo un repunit)
Resulta que como B es divisible por 2 y por 5 y A
no lo es, entonces N no es divisible ni por 2, ni por 3 , ni por 5.
Por la ley de divisibilidad por 11 esos números no
son divisibles por 11.
De esta menear se aumenta mucho su posibilidad de
ser primos.
3.- Además, los números A por ser repunits, si m+n+1
es divisible por 6, ellos son divisibles por 3,7,11,13,37 y B no lo
es, creciendo así la probabilidad de N de ser primo.
Ahora bien, el que N tenga 6k cifras hace que cada
vez 6k - 2 números N caigan dentro de esa categoría, pues el 5 puede
recorrer los puestos del 2o al penúltimo.
Ejemplo 353333, 335333,333533 y 333353 no pueden ser
divisibles por los primos 2,3,5,7,11,13 y 37
Pero en general los repunits son divisibles por
muchos primos que no dividen a B, por ejemplo los repunits Rep(30k)
tienen muchísimos divisores. (Solo se conocen 5 repunits primos)
Algunas de las leyes citadas se pueden aplicar a la
secuencia 31,331,3331,....,33333331,.3333333311111... etc.
N = 3*10^n*(10^m - 1)/9 + (10^n - 1)/9
***
|