There are many examples of families that only contain
composite numbers (only count the numbers > base).
Example 1: base 10,
family 4{6}9 (formula: (14*10^(n+1)+7)/3)
49 = 7 * 7
469 = 7 * 67
4669 = 7 * 667
46669 = 7 * 6667
466669 = 7 * 66667
4666669 = 7 * 666667
Example 2: base 10,
family 28{0}7 (formula: 28*10^(n+1)+7)
287 = 7 * 41
2807 = 7 * 401
28007 = 7 * 4001
280007 = 7 * 40001
2800007 = 7 * 400001
28000007 = 7 * 4000001
Example 3: base 9,
family {1} (formula: (9^n-1)/8)
11 = 2 * 5
111 = 7 * 14
1111 = 22 * 45
11111 = 67 * 144
111111 = 222 * 445
1111111 = 667 * 1444
11111111 = 2222 * 4445
111111111 = 6667 * 14444
1111111111 = 22222 * 44445
11111111111 = 66667 * 144444
111111111111 = 222222 * 444445
1111111111111 = 666667 * 1444444
Example 4: base 9,
family 3{8} (formula: 4*9^n-1)
38 = 5 * 7
388 = 18 * 21
3888 = 58 * 61
38888 = 188 * 201
388888 = 588 * 601
3888888 = 1888 * 2001
38888888 = 5888 * 6001
388888888 = 18888 * 20001
3888888888 = 58888 * 60001
38888888888 = 188888 * 200001
388888888888 = 588888 * 600001
3888888888888 = 1888888 * 2000001
Example 5: base 8,
family 1{0}1 (formula: 8^(n+1)+1)
11 = 3 * 3
101 = 5 * 15
1001 = 11 * 71
10001 = 21 * 361
100001 = 41 * 1741
1000001 = 101 * 7701
10000001 = 201 * 37601
100000001 = 401 * 177401
1000000001 = 1001 * 777001
10000000001 = 2001 * 3776001
100000000001 = 4001 * 17774001
1000000000001 = 10001 * 77770001
Example 6: base 9,
family {8}5 (formula: 9^(n+1)-4)
85 = 7 * 12
885 = 87 * 102
8885 = 887 * 1002
88885 = 8887 * 10002
888885 = 88887 * 100002
8888885 = 888887 * 1000002
88888885 = 8888887 * 10000002
888888885 = 88888887 * 100000002
8888888885 = 888888887 * 1000000002
88888888885 = 8888888887 * 10000000002
888888888885 = 88888888887 * 100000000002
8888888888885 = 888888888887 * 1000000000002
Example 7: base 11,
family 2{5} (formula: (5*11^n-1)/2)
25 = 3 * 9
255 = 2 * 128
2555 = 3 * 919
25555 = 2 * 12828
255555 = 3 * 91919
2555555 = 2 * 1282828
25555555 = 3 * 9191919
255555555 = 2 * 128282828
2555555555 = 3 * 919191919
25555555555 = 2 * 12828282828
255555555555 = 3 * 91919191919
2555555555555 = 2 * 1282828282828
Example 8: base 12,
family {B}9B (formula: 12^(n+2)-25)
9B = 7 * 15
B9B = 11 * AB
BB9B = B7 * 105
BBB9B = 11 * B0AB
BBBB9B = BB7 * 1005
BBBBB9B = 11 * B0B0AB
BBBBBB9B = BBB7 * 10005
BBBBBBB9B = 11 * B0B0B0AB
BBBBBBBB9B = BBBB7 * 100005
BBBBBBBBB9B = 11 * B0B0B0B0AB
BBBBBBBBBB9B = BBBBB7 * 1000005
BBBBBBBBBBB9B = 11 * B0B0B0B0B0AB
Example 9: base 14,
family B{0}1 (formula: 11*14^(n+1)+1)
B1 = 5 * 23
B01 = 3 * 395
B001 = 5 * 22B3
B0001 = 3 * 39495
B00001 = 5 * 22B2B3
B000001 = 3 * 3949495
B0000001 = 5 * 22B2B2B3
B00000001 = 3 * 394949495
B000000001 = 5 * 22B2B2B2B3
B0000000001 = 3 * 39494949495
B00000000001 = 5 * 22B2B2B2B2B3
B000000000001 = 3 * 3949494949495
Example 10: base 13,
family 3{0}95 (formula: 3*13^(n+2)+122)
395 = 14 * 2B
3095 = 7 * 58A
30095 = 5 * 7A71
300095 = 7 * 5758A
3000095 = 14 * 23A92B
30000095 = 7 * 575758A
300000095 = 5 * 7A527A71
3000000095 = 7 * 57575758A
30000000095 = 14 * 23A923A92B
300000000095 = 7 * 5757575758A
3000000000095 = 5 * 7A527A527A71
30000000000095 = 7 * 575757575758A
Example 11: base 16,
family {4}D (formula: (4*16^(n+1)+131)/15)
4D = 7 * B
44D = 3 * 16F
444D = D * 541
4444D = 7 * 9C0B
44444D = 3 * 16C16F
444444D = D * 540541
4444444D = 7 * 9C09C0B
44444444D = 3 * 16C16C16F
444444444D = D * 540540541
4444444444D = 7 * 9C09C09C0B
44444444444D = 3 * 16C16C16C16F
444444444444D = D * 540540540541
Example 12: base 16,
family {C}D (formula: (4*16^(n+1)+1)/5)
CD = 5 * 29
CCD = 71 * 1D
CCCD = 1E1 * 6D
CCCCD = 18D * 841
CCCCCD = 64D * 2081
CCCCCCD = 7F01 * 19CD
CCCCCCCD = 1FE01 * 66CD
CCCCCCCCD = 198CD * 80401
CCCCCCCCCD = 664CD * 200801
CCCCCCCCCCD = 7FF001 * 199CCD
CCCCCCCCCCCD = 1FFE001 * 666CCD
CCCCCCCCCCCCD = 1998CCD * 8004001
Example 13: base 17,
family 1{9} (formula: (25*17^n-9)/16)
19 = 2 * D
199 = B * 27
1999 = 2 * D4D
19999 = AB * 287
199999 = 2 * D4D4D
1999999 = AAB * 2887
19999999 = 2 * D4D4D4D
199999999 = AAAB * 28887
1999999999 = 2 * D4D4D4D4D
19999999999 = AAAAB * 288887
199999999999 = 2 * D4D4D4D4D4D
1999999999999 = AAAAAB * 2888887
Example 14: base 19,
family 1{6} (formula: (4*19^n-1)/3)
16 = 5 * 5
166 = D * 1I
1666 = 5 * 515
16666 = CD * 1II
166666 = 5 * 51515
1666666 = CCD * 1III
16666666 = 5 * 5151515
166666666 = CCCD * 1IIII
1666666666 = 5 * 515151515
16666666666 = CCCCD * 1IIIII
166666666666 = 5 * 51515151515
1666666666666 = CCCCCD * 1IIIIII
Example 15: base 25,
family 2{1} (formula: (49*25^n-1)/24)
21 = 3 * H
211 = 14 * 1J
2111 = 2N * HC
21111 = 144 * 1IJ
211111 = 2MN * HCC
2111111 = 1444 * 1IIJ
21111111 = 2MMN * HCCC
211111111 = 14444 * 1IIIJ
2111111111 = 2MMMN * HCCCC
21111111111 = 144444 * 1IIIIJ
211111111111 = 2MMMMN * HCCCCC
2111111111111 = 1444444 * 1IIIIIJ
Example 16: base 36,
family O{Z} (formula: 25*36^n-1)
OZ = T * V
OZZ = 4Z * 51
OZZZ = TZ * U1
OZZZZ = 4ZZ * 501
OZZZZZ = TZZ * U01
OZZZZZZ = 4ZZZ * 5001
OZZZZZZZ = TZZZ * U001
OZZZZZZZZ = 4ZZZZ * 50001
OZZZZZZZZZ = TZZZZ * U0001
OZZZZZZZZZZ = 4ZZZZZ * 500001
OZZZZZZZZZZZ = TZZZZZ * U00001
OZZZZZZZZZZZZ = 4ZZZZZZ * 5000001
However, there are also
many families, which have no known prime (or PRP) > base, neither
can be proven that they only contain composite numbers (only count
the numbers > base), e.g.
base 11, family 5{7}
base 13, family 9{5}
base 13, family A{3}A
base 16, family {3}AF
base 16, family {4}DD
base 17, family 1{7}
base 17, family F1{9}
base 18, family C{0}C5
You can try to find a
prime (or PRP) > base in these families.