Problems & Puzzles: Puzzles
|
Problems & Puzzles: Puzzles
From Oct 25-31, Oct, 2025, contributions came from Emmanuel Vantieghem, Gennady Gusev, Simoin Cavegn, Jeff Heleen, Fred Schneider
*** Emmanuel wrote:
(a
is the first of n consecutive CRS numbers, b the last) *** Gennady wrote:
Q1. I found the following run of numbers starting from:
run 5 - 84441507
run 6 - 2020271859
run 7 - 7374557947
run 8 - 121153257533
Q2. Unknown
Q3. Run 8 - 121153257533
I tested the numbers up to 10^13 and didn't find a run > 8.
*** Simon wrote:
n=1 -> 8 *** Jeff wrote:
I only found chains of length 3 and 4:
134848, 134849, 134850
3678723, 3678724, 3678725, 3678726
*** Fred wrote:
Q1:
Here are my solutions
Length = 5
84441507 = 3 * 61 * 67 * 71 * 97,
84441508 = 2^2 * 43 * 53 * 59 * 15784441509 = 41 * 73 * 89 * 317
84441510 = 2 * 3^2 * 5 * 19^2 * 23 * 113
84441511 = 7 * 11 * 37 * 107 * 277
(Smooth UB = 433)
2020271859 = 3^2 * 499 * 599 * 751
2020271860 = 2^2 * 5 * 31^2 * 257 * 409
2020271861 = 23 * 53 * 73^2 * 311
2020271862 = 2 * 3 * 7^2 * 19 * 397 * 911
2020271863 = 29 * 181 * 557 * 691
2020271864 = 2^3 * 13 * 59 * 337 * 977
(Smooth UB = 1259)
Length = 7
7374557947 = 41 * 353 * 503 * 1013
7374557948 = 2^2 * 947 * 1201 * 1621
7374557949 = 3 * 11 * 37^2 * 239 * 683
7374557950 = 2 * 5^2 * 103 * 859 * 1667
7374557951 = 19 * 577 * 599 * 1123
7374557952 = 2^8 * 3^3 * 659 * 1619
7374557953 = 7 * 719 * 1061 * 1381
(Smooth UB = 1933)
Length = 8
121153257533 = 7 * 11 * 269 * 2311 * 2531
121153257534 = 2 * 3 * 181^2 * 419 * 1471
121153257535 = 5 * 97 * 197 * 607 * 2089
121153257536 = 2^6 * 17^2 * 61 * 167 * 643
121153257537 = 3 * 13 * 59 * 131 * 277 * 1451
121153257538 = 2 * 31 * 743 * 1153 * 2281
121153257539 = 71 * 137 * 149 * 179 * 467
121153257540 = 2^2 * 3^2 * 5 * 7^2 * 3041 * 4517
(Smooth UB = 4943)
Q2:
I would suspect there is no limit to the sequence length nor the level
of the root (cube root and beyond)
***
|
|||
|
|||