Problems & Puzzles: Puzzles

 

 

Problems & Puzzles: Puzzles

Puzzle 1243 Consecutive Cube root smooth numbers

Giorgos Kalogeropouls sent the following nice puzzle:

Cube Root Smooth (CRS) numbers are numbers k whose largest prime factor lpf(k) <= k^(1/3) (A090081)
In this challenge you are asked to find the least number k that produces a run of exactly n consecutive CRS numbers.

n=1 -> 8
n=2 -> 2400, 2401
n=3 -> 134848, 134849, 134850
n=4 -> 3678723,  3678724, 3678725, 3678726

Example:

n=2
  • 2400 = 25 × 3 × 52 & 5^3 = 125< 2400
  • 2401 = 74 & 7^3 = 343 < 2401
Q1: Find the least k that starts a run of 5,6,7... consecutive CRS numbers.
Q2: Is this sequence infinite?
Q3: What is the longest run of consecutive CRS numbers that you can find?

   


From Oct 25-31, Oct, 2025, contributions came from Emmanuel Vantieghem, Gennady Gusev, Simoin Cavegn, Jeff Heleen, Fred Schneider

 

***

Emmanuel wrote:

(a is the first of  n  consecutive CRS numbers, b the last)
n          a                   b
5      84441507       84441511
6      2020271859   2020271864
7      7374557947   7374557953

The next  a  - if it exists - will be > 37-10^9.

***

Gennady wrote:

Q1. I found the following run of numbers starting from:
run 5 - 84441507
run 6 - 2020271859
run 7 - 7374557947
run 8 - 121153257533
Q2. Unknown
Q3. Run 8 - 121153257533
 
I tested the numbers up to 10^13 and didn't find  a run > 8.

***

Simon wrote:

n=1 -> 8
n=2 -> 2400, 2401
n=3 -> 134848, 134849, 134850
n=4 -> 3678723, 3678724, 3678725, 3678726
n=5 -> 84441507, 84441508, 84441509, 84441510, 84441511
n=6 -> 2020271859, 2020271860, 2020271861, 2020271862, 2020271863, 2020271864
n=7 -> 7374557947, 7374557948, 7374557949, 7374557950, 7374557951, 7374557952, 7374557953
n=8 -> 121153257533, 121153257534, 121153257535, 121153257536, 121153257537, 121153257538, 121153257539, 121153257540
n=9 -> 28632343404756, 28632343404757, 28632343404758, 28632343404759, 28632343404760, 28632343404761, 28632343404762, 28632343404763, 28632343404764

Searched up to 4×10^13 with an algorithm that multiplies all factors up to the cube root and temporarily stores them in a large bit array.

***

Jeff wrote:

I only found chains of length 3 and 4:

134848, 134849, 134850
3678723, 3678724, 3678725, 3678726

***

Fred wrote:

Q1: 
Here are my solutions 
Length = 5
84441507 = 3 * 61 * 67 * 71 * 97, 
84441508 = 2^2 * 43 * 53 * 59 * 157
84441509 = 41 * 73 * 89 * 317
84441510 = 2 * 3^2 * 5 * 19^2 * 23 * 113
84441511 = 7 * 11 * 37 * 107 * 277
(Smooth UB = 433)

Length  = 6
2020271859 = 3^2 * 499 * 599 * 751
2020271860 = 2^2 * 5 * 31^2 * 257 * 409
2020271861 = 23 * 53 * 73^2 * 311
2020271862 = 2 * 3 * 7^2 * 19 * 397 * 911
2020271863 = 29 * 181 * 557 * 691
2020271864 = 2^3 * 13 * 59 * 337 * 977 
(Smooth UB = 1259)

Length = 7
7374557947 = 41 * 353 * 503 * 1013
7374557948 = 2^2 * 947 * 1201 * 1621
7374557949 = 3 * 11 * 37^2 * 239 * 683
7374557950 = 2 * 5^2 * 103 * 859 * 1667
7374557951 = 19 * 577 * 599 * 1123
7374557952 = 2^8 * 3^3 * 659 * 1619
7374557953 = 7 * 719 * 1061 * 1381 
(Smooth UB = 1933)

Length = 8
121153257533 = 7 * 11 * 269 * 2311 * 2531
121153257534 = 2 * 3 * 181^2 * 419 * 1471
121153257535 = 5 * 97 * 197 * 607 * 2089
121153257536 = 2^6 * 17^2 * 61 * 167 * 643
121153257537 = 3 * 13 * 59 * 131 * 277 * 1451
121153257538 = 2 * 31 * 743 * 1153 * 2281
121153257539 = 71 * 137 * 149 * 179 * 467
121153257540 = 2^2 * 3^2 * 5 * 7^2 * 3041 * 4517 
(Smooth UB = 4943)

Q2:
I would suspect there is no limit to the sequence length nor the level of the root (cube root and beyond)

 

***

 

Records   |  Conjectures  |  Problems  |  Puzzles