Problems & Puzzles: Puzzles
Problems & Puzzles: Puzzles
From Set. 13-19, 2025 contrbutions came from Michael Branicky, Giorgos Kalogeropopulos, JM Rebert, Alessandro Casini, Gennady Gusev, Simon Cavegn, Emmanuel Vantieghem *** Michael wrote:
1089427 is not the ultimate champion. These are collected in OEIS
A230315 (a(n) is the smallest prime dividing n numbers of the form
k! + 1).
It lists one
above: 2374649, dividing 14. Two below include 62939 (9)
and 292627 (11), with other numbers possibly tying these listed.
...
The 12 values for 1089427
are:
281783, 362757, 439703, 468331, 496207, 593219,
621095, 649723, 710384, 726669, 807643, 1089426
The 14 values for
2374649 are
653598, 689779, 789933, 845577, 869139, 946501,
950026, 1410794, 1428147, 1505509, 1529071,
1584715, 1684869, 2374648
*** Giorgos wrote:
Merickel has posted these records in OEIS A230315
Q1. {281783, 362757, 439703, 468331, 496207, 593219, 621095, 649723, 710384, 726669, 807643, 1089426}
Q2. Here are all known records
2->{1}
7->{3,6} 23->{14,18,22} 59->{15,40,43,58} 71->{7,9,19,51,61,63,70} 3643->{1005,1459,1821,1858, 62939->{7669,15990,29913, 292627->{44009,82254,82951, 1089427->{281783,362757, 2374649->{653598,689779, *** JM wrote:
*** Alessandro wrote_
*** Gennady wrote:
I tested the first millions of primes. All
155 results with k>=10 are shown in the attached file all.txt
A new champion with 14 'n' was found:
p= 2374649, k=14, n= 653598 689779 789933 845577 869139
946501 950026 1410794 1428147 1505509 1529071
1584715 1684869 2374648
8 primes for 12 'n':
p= 1089427, k=12, n= 281783 362757 439703 468331
496207 593219 621095 649723 710384 726669
807643 1089426
p= 5975051, k=12, n= 269769 542667 924423 1172029
2987525 3136890 3795582 4803021 5050627 5432383
5705281 5975050
p= 7705331, k=12, n= 396550 1774500 2793099 3352415
3404505 4186300 4300825 4352915 4912231 5178310
7237574 7705330
p= 8294159, k=12, n= 183189 541761 689501 2092747
5000738 6201411 6826028 7333764 7604657 7752397
8110969 8294158
p= 8444981, k=12, n= 69572 690909 1034439 1213029
2058561 5291334 6386419 7093038 7231951 7410541
7754071 8444980
p=10114129, k=12, n= 1940333 2246215 2399255 4533061
4758745 5355383 5581067 7396762 7714873 7867913
8173795 10114128
p=11864791, k=12, n= 514765 2942009 3427061 4584735
5932395 7280055 8437729 8922781 9514512 10180522
11350025 11864790
p=13135877, k=12, n= 265753 402956 1104125 1197257
1209022 2866268 3880401 9255475 11938619 12031751
12870123 13135876
*** Simon wrote:
Q1: *** Emmanuel wrote:
The numbers n
such that n! + 1 is divisible by 1089427 are : 281783, 362757,
439703, 468331, 496207, 593219, 621095, 649723, 710384, 726669, 807643
and,1089426.
The next champion is the prime p = 2374649 for which there are 14 values of n such that n! + 1 is divisible by p : 653598, 689779, ,789933, 845577, 869139, 946501, 950026, 1410794, 1428147, 1505509, 1529071, 1584715, 1684869 and 2374649. When I searched in the OEIS for the number 2374649 I came up to A230315 where I learned that the next champion is > 1.1*10^8 (found by Giovanni Resta).
With the courage of despair I tried to search further from that point
on. But after two days I only reached 110050243.
I think a greater apparatus than my PC is needed to find the next
champion.
*** Simon cavegn wrote on Oct 3, 2025 Q2. IFound a new champion!
584133523 divides n!+1 16 times Later he added: "584133523 is the smallest prime for 16 times, I tested all up to it." Accordingly this must be added in short in the OEIS A230315. Later on Oct 5, 2025, Simon wrote:
"it is updated: https://oeis.org/A230315"
NB by CR: The 16 values n!+1 divided by 584133523 were verified on my request (CR) by Michael Branickly and Sabastián Martín Ruiz, independently. ***
|
|||
|
|||