Problems & Puzzles: Puzzles
From 19 to 25 of July, 2025, contributions came from Giorgos Kalogeropoulos, J.M. Rebert *** Do you want you to check some results in an online calculator? Here is one:
https://mathtools.lagrida.com/ *** Giorgos wrote:
For n from -5 to 22, 708n^2 - 3912n + 6373
produces 28 consecutive distinct primes
n=-4, p=33349, L. 1/p=33348 n=-3, p=24481, L. 1/p=6120 n=-2, p=17029, L. 1/p=17028 n=-1, p=10993, L. 1/p=10992 n=0, p=6373, L. 1/p=1062 n=1, p=3169, L. 1/p=72 n=2, p=1381, L. 1/p=1380 n=3, p=1009, L. 1/p=252 n=4, p=2053, L. 1/p=342 n=5, p=4513, L. 1/p=1504 n=6, p=8389, L. 1/p=8388 n=7, p=13681, L. 1/p=3420 n=8, p=20389, L. 1/p=6796 n=9, p=28513, L. 1/p=28512 n=10, p=38053, L. 1/p=2718 n=11, p=49009, L. 1/p=6126 n=12, p=61381, L. 1/p=61380 n=13, p=75169, L. 1/p=37584 n=14, p=90373, L. 1/p=45186 n=15, p=106993, L. 1/p=106992 n=16, p=125029, L. 1/p=125028 n=17, p=144481, L. 1/p=14448 n=18, p=165349, L. 1/p=165348 n=19, p=187633, L. 1/p=62544 n=20, p=211333, L. 1/p=105666 n=21, p=236449, L. 1/p=29556 n=22, p=262981, L. 1/p=262980 *** Rebert wrote:
I found:
For n from 0 to 19, f(n) = 3943 - 100*n + 740*n^2,
produces 20 consecutive prime numbers p such that the number of
digits L in the repeating decimal period of 1/p is even,
all 20 primes are distinct.
n p L
0 3943 3942
1 4583 4582
2 6703 6702
3 10303 3434
4 15383 15382
5 21943 7314
6 29983 9994
7 39503 39502
8 50503 50502
9 62983 62982
10 76943 76942
11 92383 92382
12 109303 109302
13 127703 127702
14 147583 49194
15 168943 168942
16 191783 191782
17 216103 216102
18 241903 80634
19 269183 269182
For n from 0 to 20, f(n) = 1381 - 1080*n + 708*n^2,
produces 21 consecutive prime numbers p such that the number of
digits L in the repeating decimal period of 1/p is even,
all 21 primes are distinct.
n p L
0 1381 1380
1 1009 252
2 2053 342
3 4513 1504
4 8389 8388
5 13681 3420
6 20389 6796
7 28513 28512
8 38053 2718
9 49009 6126
10 61381 61380
11 75169 37584
12 90373 45186
13 106993 106992
14 125029 125028
15 144481 14448
16 165349 165348
17 187633 62544
18 211333 105666
19 236449 29556
20 262981 262980
For n from 0 to 21, f(n) = 3169 - 2496*n + 708*n^2,
produces 22 consecutive prime nombers p such that the number of
digits L in the repeating decimal period of 1/p is even,
all 22 primes are distinct.
n p L
0 3169 72
1 1381 1380
2 1009 252
3 2053 342
4 4513 1504
5 8389 8388
6 13681 3420
7 20389 6796
8 28513 28512
9 38053 2718
10 49009 6126
11 61381 61380
12 75169 37584
13 90373 45186
14 106993 106992
15 125029 125028
16 144481 14448
17 165349 165348
18 187633 62544
19 211333 105666
20 236449 29556
21 262981 262980
For n from 0 to 22, f(n) = 6373 - 3912*n + 708*n^2,
produces 23 consecutive prime numbers p such that the number of
digits L in the repeating decimal period of 1/p is even,
all 23 primes are distinct.
n p L
0 6373 1062
1 3169 72
2 1381 1380
3 1009 252
4 2053 342
5 4513 1504
6 8389 8388
7 13681 3420
8 20389 6796
9 28513 28512
10 38053 2718
11 49009 6126
12 61381 61380
13 75169 37584
14 90373 45186
15 106993 106992
16 125029 125028
17 144481 14448
18 165349 165348
19 187633 62544
20 211333 105666
21 236449 29556
22 262981 262980
For n from 0 to 23, f(n) = 10993 - 5328*n + 708*n^2,
produces 24 consecutive primes p such that the number of digits L in
the repeating decimal period of 1/p is even,
all 24 primes are distinct.
n p L
0 10993 10992
1 6373 1062
2 3169 72
3 1381 1380
4 1009 252
5 2053 342
6 4513 1504
7 8389 8388
8 13681 3420
9 20389 6796
10 28513 28512
11 38053 2718
12 49009 6126
13 61381 61380
14 75169 37584
15 90373 45186
16 106993 106992
17 125029 125028
18 144481 14448
19 165349 165348
20 187633 62544
21 211333 105666
22 236449 29556
23 262981 262980
For n from 0 to 24, f(n) = 17029 - 6744*n + 708*n^2,
produces 25 consecutive primes p such that the number of digits L in
the repeating decimal period of 1/p is even,
all 25 primes are distinct.
n p L
0 17029 17028
1 10993 10992
2 6373 1062
3 3169 72
4 1381 1380
5 1009 252
6 2053 342
7 4513 1504
8 8389 8388
9 13681 3420
10 20389 6796
11 28513 28512
12 38053 2718
13 49009 6126
14 61381 61380
15 75169 37584
16 90373 45186
17 106993 106992
18 125029 125028
19 144481 14448
20 165349 165348
21 187633 62544
22 211333 105666
23 236449 29556
24 262981 262980
For n from 0 to 25, f(n) = 24481 - 8160*n + 708*n^2,
produces 26 consecutive prime numbers p such that the number of
digits L in the repeating decimal period of 1/p is even,
all 26 primes are distinct.
n p L
0 24481 6120
1 17029 17028
2 10993 10992
3 6373 1062
4 3169 72
5 1381 1380
6 1009 252
7 2053 342
8 4513 1504
9 8389 8388
10 13681 3420
11 20389 6796
12 28513 28512
13 38053 2718
14 49009 6126
15 61381 61380
16 75169 37584
17 90373 45186
18 106993 106992
19 125029 125028
20 144481 14448
21 165349 165348
22 187633 62544
23 211333 105666
24 236449 29556
25 262981 262980
For n from 0 to 26, f(n) = 33349 - 9576*n + 708*n^2,
produces 27 consecutive primes p such that the
umber of digits L in the repeating decimal period of 1/p is even,
all 27 primes are distinct.
n p L
0 33349 33348
1 24481 6120
2 17029 17028
3 10993 10992
4 6373 1062
5 3169 72
6 1381 1380
7 1009 252
8 2053 342
9 4513 1504
10 8389 8388
11 13681 3420
12 20389 6796
13 28513 28512
14 38053 2718
15 49009 6126
16 61381 61380
17 75169 37584
18 90373 45186
19 106993 106992
20 125029 125028
21 144481 14448
22 165349 165348
23 187633 62544
24 211333 105666
25 236449 29556
26 262981 262980
*** Later, on July 30, 2025. JM Rebert sent more & larger solutions.
For n from -19 to 8, f(n) = 1009 - 336*n + 708*n^2,
produces 28 consecutive prime numbers p such that the number of digits L
in the repeating decimal period of 1/p is even, all 28 primes
are distinct.
n p L
-19 262981 262980
-18 236449 29556
-17 211333 105666
-16 187633 62544
-15 165349 165348
-14 144481 14448
-13 125029 125028
-12 106993 106992
-11 90373 45186
-10 75169 37584
-9 61381 61380
-8 49009 6126
-7 38053 2718
-6 28513 28512
-5 20389 6796
-4 13681 3420
-3 8389 8388
-2 4513 1504
-1 2053 342
0 1009 252
1 1381 1380
2 3169 72
3 6373 1062
4 10993 10992
5 17029 17028
6 24481 6120
7 33349 33348
8 43633 4848
.
For n from -9 to 19, f(n) = 3943 - 100*n + 740*n^2,
produces 29 consecutive prime numbers p such that the number of
digits L in the repeating decimal period of 1/p is even, all 29 primes
are distinct.
n p L
-9 64783 64782
-8 52103 52102
-7 40903 40902
-6 31183 10394
-5 22943 22942
-4 16183 16182
-3 10903 10902
-2 7103 7102
-1 4783 4782
0 3943 3942
1 4583 4582
2 6703 6702
3 10303 3434
4 15383 15382
5 21943 7314
6 29983 9994
7 39503 39502
8 50503 50502
9 62983 62982
10 76943 76942
11 92383 92382
12 109303 109302
13 127703 127702
14 147583 49194
15 168943 168942
16 191783 191782
17 216103 216102
18 241903 80634
19 269183 269182
***
|
|||
|
|||