Problems & Puzzles: Puzzles
From June 28 to July 4, contributions came from J. M. Rebert, Michael Branicky, Gennady Gusev, Giorgos Kalogeropoulos, Adam Stinchcombe, Simon Cavegn, Emmanuel Vantieghem, Oscar Volpatti *** Rebert wrote:
Q1. Find more alike.
I found:
primes d d-1 factorisation
[2, 3, 11] 2311 2310 = 2 * 3 * 5 * 7 * 11;
[5, 7, 41] 5741 5740 = 2^2 * 5 * 7 * 41;
[2, 11, 3] 2113 2112 = 2^6 * 3 * 11;
[11, 2, 3] 1123 1122 = 2 * 3 * 11 * 17;
[2, 5, 641] 25641 25640 = 2^3 * 5 * 641;
[2, 137, 3] 21373 21372 = 2^2 * 3 * 13 * 137;
[2, 7, 3253] 273253 273252 = 2^2 * 3 * 7 * 3253;
[2, 113, 11] 211311 211310 = 2 * 5 * 11 * 17 * 113;
[2, 241, 31] 224131 224130 = 2 * 3 * 5 * 31 * 241;
[7, 2, 39779] 7239779 7239778 = 2 * 7 * 13 * 39779;
[2, 6173, 53] 2617353 2617352 = 2^3 * 53 * 6173;
[131, 13, 11] 1311311 1311310 = 2 * 5 * 7 * 11 * 13 * 131;
[131, 13, 11] 1311311 1311310 = 2 * 5 * 7 * 11 * 13 * 131;
[29, 5, 12721] 29512721 29512720 = 2^4 * 5 * 29 * 12721;
[131, 5, 5021] 13155021 13155020 = 2^2 * 5 * 131 * 5021;
Q2. Can the same be done with >3 distinct primes concatenated?
I found:
primes d d-1 factorisation
[2, 3, 11] 2311 2310 = 2 * 3 * 5 * 7 * 11;
[5, 7, 41] 5741 5740 = 2^2 * 5 * 7 * 41;
[2, 11, 3] 2113 2112 = 2^6 * 3 * 11;
[11, 2, 3] 1123 1122 = 2 * 3 * 11 * 17;
[5, 2, 17, 31] 521731 521730 = 2 * 3^2 * 5 * 11 * 17 * 31;
[5, 2, 17, 31] 521731 521730 = 2 * 3^2 * 5 * 11 * 17 * 31;
[2, 19, 3, 37] 219337 219336 = 2^3 * 3 * 13 * 19 * 37;
[2, 73, 3, 13] 273313 273312 = 2^5 * 3^2 * 13 * 73;
[2, 19, 3, 37] 219337 219336 = 2^3 * 3 * 13 * 19 * 37;
[2, 73, 3, 13] 273313 273312 = 2^5 * 3^2 * 13 * 73;
[11, 2, 5, 31] 112531 112530 = 2 * 3 * 5 * 11^2 * 31;
[13, 7, 2, 29] 137229 137228 = 2^2 * 7 * 13^2 * 29;
[19, 3, 11, 7] 193117 193116 = 2^2 * 3 * 7 * 11^2 * 19;
[7, 2, 131, 23] 7213123 7213122 = 2 * 3^2 * 7 * 19 * 23 * 131;
[251, 2, 5, 11] 2512511 2512510 = 2 * 5 * 7 * 11 * 13 * 251;
[271, 2, 7, 11] 2712711 2712710 = 2 * 5 * 7 * 11 * 13 * 271;
[521, 5, 2, 11] 5215211 5215210 = 2 * 5 * 7 * 11 * 13 * 521;
[571, 5, 7, 11] 5715711 5715710 = 2 * 5 * 7 * 11 * 13 * 571;
[751, 7, 5, 11] 7517511 7517510 = 2 * 5 * 7 * 11 * 13 * 751;
[3, 61, 13, 23] 3611323 3611322 = 2 * 3^2 * 11 * 13 * 23 * 61;
[3, 61, 13, 23] 3611323 3611322 = 2 * 3^2 * 11 * 13 * 23 * 61;
[3, 61, 13, 23] 3611323 3611322 = 2 * 3^2 * 11 * 13 * 23 * 61;
[3, 61, 13, 23] 3611323 3611322 = 2 * 3^2 * 11 * 13 * 23 * 61;
[3, 61, 13, 23] 3611323 3611322 = 2 * 3^2 * 11 * 13 * 23 * 61;
[3, 61, 13, 23] 3611323 3611322 = 2 * 3^2 * 11 * 13 * 23 * 61;
[17, 13, 19, 3] 1713193 1713192 = 2^3 * 3 * 13 * 17^2 * 19;
[17, 13, 19, 3] 1713193 1713192 = 2^3 * 3 * 13 * 17^2 * 19;
[17, 13, 19, 3] 1713193 1713192 = 2^3 * 3 * 13 * 17^2 * 19;
[5, 2, 7, 20921] 52720921 52720920 = 2^3 * 3^2 * 5 * 7 * 20921;
[3, 2, 22567, 7] 32225677 32225676 = 2^2 * 3 * 7 * 17 * 22567;
[2, 2713, 23, 7] 22713237 22713236 = 2^2 * 7 * 13 * 23 * 2713;
[2, 3, 661, 157] 23661157 23661156 = 2^2 * 3 * 19 * 157 * 661;
[3, 2, 271, 223] 32271223 32271222 = 2 * 3 * 89 * 223 * 271;
[2, 3, 661, 157] 23661157 23661156 = 2^2 * 3 * 19 * 157 * 661;
[3, 2, 271, 223] 32271223 32271222 = 2 * 3 * 89 * 223 * 271;
[2, 3, 661, 157] 23661157 23661156 = 2^2 * 3 * 19 * 157 * 661;
[3, 2, 271, 223] 32271223 32271222 = 2 * 3 * 89 * 223 * 271;
[2, 3, 661, 157] 23661157 23661156 = 2^2 * 3 * 19 * 157 * 661;
[3, 2, 271, 223] 32271223 32271222 = 2 * 3 * 89 * 223 * 271;
[3, 2, 5, 7, 11] 325711 325710 = 2 * 3^2 * 5 * 7 * 11 * 47;
[3, 2, 5, 7, 11] 325711 325710 = 2 * 3^2 * 5 * 7 * 11 * 47;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[7, 3, 2, 13, 41, 31] 732134131 732134130 = 2 * 3 * 5 * 7 * 13 * 31 * 41
* 211;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
[5, 3, 13, 19, 2, 31] 531319231 531319230 = 2 * 3^3 * 5 * 13 * 19 * 31 *
257;
...
Q1. Find more alike.
I found:
primes d d-1 factorisation
[2, 3, 11] 2311 2310 = 2 * 3 * 5 * 7 * 11;
[5, 7, 41] 5741 5740 = 2^2 * 5 * 7 * 41;
[2, 11, 3] 2113 2112 = 2^6 * 3 * 11;
[11, 2, 3] 1123 1122 = 2 * 3 * 11 * 17;
[2, 5, 641] 25641 25640 = 2^3 * 5 * 641;
[2, 137, 3] 21373 21372 = 2^2 * 3 * 13 * 137;
[2, 7, 3253] 273253 273252 = 2^2 * 3 * 7 * 3253;
[2, 113, 11] 211311 211310 = 2 * 5 * 11 * 17 * 113;
[2, 241, 31] 224131 224130 = 2 * 3 * 5 * 31 * 241;
[7, 2, 39779] 7239779 7239778 = 2 * 7 * 13 * 39779;
[2, 6173, 53] 2617353 2617352 = 2^3 * 53 * 6173;
[131, 13, 11] 1311311 1311310 = 2 * 5 * 7 * 11 * 13 * 131;
[131, 13, 11] 1311311 1311310 = 2 * 5 * 7 * 11 * 13 * 131;
[29, 5, 12721] 29512721 29512720 = 2^4 * 5 * 29 * 12721;
[131, 5, 5021] 13155021 13155020 = 2^2 * 5 * 131 * 5021;
Q2. Can the same be done with >3 distinct primes concatenated?
I found:
primes d d-1 factorisation
[3, 13] 313 312 = 2^3 * 3 * 13;
[2, 2857] 22857 22856 = 2^3 * 2857;
[83, 167] 83167 83166 = 2 * 3 * 83 * 167;
[13, 2549] 132549 132548 = 2^2 * 13 * 2549;
[29, 16763] 2916763 2916762 = 2 * 3 * 29 * 16763;
*** Michael wrote: a b c d d-1 factors of d-1 2 7 3253 273253 273252 2^2 x 3 x 7 x 3253 877 32063 13 8773206313 8773206312 2^3 x 3 x 13 x 877 x 32063 2 3 203539823 23203539823 23203539822 2 x 3 x 19 x 203539823 Q2: For 4 distinct primes I found: a b c d e e-1 factors of e-1 3 2 7 19 32719 32718 2 x 3 x 7 x 19 x 41 2 73 3 13 273313 273312 2^5 x 3^2 x 13 x 73 7 2 131 23 7213123 7213122 2 x 3^2 x 7 x 19 x 23 x 131 3 61 13 23 3611323 3611322 2 x 3^2 x 11 x 13 x 23 x 61 251 2 5 11 2512511 2512510 2 x 5 x 7 x 11 x 13 x 251 521 5 2 11 5215211 5215210 2 x 5 x 7 x 11 x 13 x 521 3 2 13 28411 321328411 321328410 2 x 3 x 5 x 13 x 29 x 28411 3079 2 463 3 307924633 307924632 2^3 x 3^3 x 463 x 3079 And for 5 distinct primes I found: a b c d e f f-1 factors of f-1 2 7 11 4133 3 271141333 271141332 2^2 x 3 x 7 x 11 x 71 x 4133 7 13 2 103 17 713210317 713210316 2^2 x 3 x 7 x 13 x 17 x 103 x 373 7 19 83 11 13 719831113 719831112 2^3 x 3 x 7 x 11 x 13 x 19^2 x 83 11 1061 2 3 61 1110612361 1110612360 2^3 x 3 x 5 x 11 x 13 x 61 x 1061
Using a different approach, I found these with 6 distinct primes: *** Gennady wrote:
Q1.
273253 <=> 2^2
* 7 * 3 * 3253 =
273252
Q2.
32719 <=> 3 * 2 * 7 * 19 *
41 = 32718
273313 <=> 2^5
* 73 * 3^2
* 13 = 273312
2512511 <=> 251 * 2 *
5 * 11 *
7 * 13 = 2512510
3611323 <=> 3^2
* 61 * 13 * 23 *
2 * 11 = 3611322
5215211 <=> 521 * 5 * 2 * 11 *
7 * 13 = 5215210
7213123 <=> 7 * 2 * 131 * 23 *
3^2 * 19 = 7213122
307924633 <=> 3079 * 2^3
* 463 * 3^3
= 307924632
321328411 <=> 3 * 2 * 13 * 28411 *
5 * 29 = 321328410
...
Q2. 5 prime divisors:
713210317 <=> 7 * 13 * 2^2
* 103 * 17 * 3
* 373 = 713210316
719831113 <=> 7 * 19^2
* 83 * 11 * 13 *
2^3 * 3 = 719831112
Exhausting search up to 10^9.
*** Giorgos wrote: Here are some more examples for each category
The format of the answers will be
d -> {a.b.c,...} -> Factorization of d-1
Q1.
273253 -> {2,7,3253} -> {{2, 2}, {3, 1}, {7, 1}, {3253, 1}}
1311311 -> {131,13,11} -> {{2, 1}, {5, 1}, {7, 1}, {11, 1}, {13, 1},
{131, 1}}
8773206313 -> {877,32063,13} -> {{2, 3}, {3, 1}, {13, 1}, {877, 1},
{32063, 1}}
90911909111 -> {90911,9091,11} -> {{2, 1}, {5, 1}, {11, 1}, {9091, 1},
{90911, 1}}
Q2.
4 primes
2512511 -> {251,2,5,11} -> {{2, 1}, {5, 1}, {7, 1}, {11, 1}, {13, 1},
{251, 1}}
7213123 -> {7,2,131,23} -> {{2, 1}, {3, 2}, {7, 1}, {19, 1}, {23, 1}, {131, 1}} 307924633 -> {3079,2,463,3} -> {{2, 3}, {3, 3}, {463, 1}, {3079, 1}}
1369559327391187 -> {13695593,2,739,1187} -> {{2, 1}, {3, 1}, {19, 1},
{739, 1}, {1187, 1}, {13695593, 1}}
5 primes
387731737123 -> {3877,3,173,71,23} -> {{2, 1}, {3, 1}, {23, 1}, {59, 1},
{71, 1}, {173, 1}, {3877, 1}}
16034313148127 -> {160343,13,1481,2,7} -> {{2, 1}, {7, 2}, {13, 1}, {53,
1}, {1481, 1}, {160343, 1}}
6 primes
2319103711 -> {2,3,19,103,7,11} -> {{2, 1}, {3, 4}, {5, 1}, {7, 1}, {11,
1}, {19, 2}, {103, 1}}
101193759613 -> {101,19,37,59,61,3} -> {{2, 2}, {3, 2}, {11, 1}, {19,
1}, {37, 1}, {59, 1}, {61, 1}, {101, 1}}
6563177017237 -> {6563,17,701,7,2,37} -> {{2, 2}, {3, 4}, {7, 1}, {17,
1}, {37, 1}, {701, 1}, {6563, 1}}
25457231353217 -> {25457,23,13,53,2,17} -> {{2, 7}, {13, 1}, {17, 1},
{23, 1}, {29, 1}, {53, 1}, {25457, 1}}
20903887167231097 -> {20903887,167,2,3,109,7} -> {{2, 3}, {3, 2}, {7,
1}, {109, 2}, {167, 1}, {20903887, 1}}
7 primes
58721341310113 -> {587,2,13,41,3,101,13}
-> {{2, 5}, {3, 1}, {13, 2}, {41, 1}, {101, 1}, {587, 1}, {1489, 1}} (Note
CR: prime 13 repeated, violates the rule)
*** Adam wrote:
Period separates individual primes (so 2.3.11 stands for the example
2311) followed by the factorization of (d-1).
Length four: 3.2.7.19 and d-1=2*3*7*19*41
2.73.3.13 and d-1=2^5*3^2*13*73...........(
251.2.5.11 and d-1=2*5*7*11*13*251
521.5.2.11 and d-1=2*5*7*11*13*521
7.2.131.23 and d-1=2*3^2*7*19*23*131
3.61.13.23 and d-1=2*3^2*11*13*23*61
Length five: 7.13.2.103.17 and d-1=2^2*3*7*13817*103*373
Length six: 2.3.19.103.7.11 and d-1=2*3^4*5*7*11*19^2*103
Considering these examples came so fast, I am somewhat surprised that a
list of seven primes isn't appearing (yet).
*** Simon wrote:
Q1 *** Emmanuel wrote:
Q1.
I only could find one more solution : {a, b, c, d} = {2, 7, 3253, 273253}; d - 1 = 2^2*3*7*3253 Q2 I found several solutions with four primes : a b c d e factorization of e - 1 2 73 3 13 273313 2^5*3^2*13*73 3 2 7 19 32719 2*3*7*19*41 3 61 13 23 3611323 2*3^2*11*13*23*61 7 2 131 23 7213123 2*3^2*7*19*23*131 251 2 5 11 2512511 2*5*7*11*13*251 521 5 2 11 5215211 2*5*7*11*13*521 If we admit repeated primes : 2 11 2 353 2112353 2^5*11*17*353 2 11 11 113 21111113 2^3*11^2*113*193 Here is a solution with five primes : a b c d e f factorization of f - 1 7 19 83 11 13 719831113 2^3* 3*7*11*13*19^2* 83 With repetition allowed : 2 2 71 43 3 2271433 2^3*3* 31* 43* 71 2 3 3 17 3 233173 2^2*3^3*17*127 3 3 2 3 17 332317 2^2*3^3* 17*181 3 61 13 2 3 3611323 2*3^2*11*13*23*61 7 13 2 103 17 713210317 2^2* 3*7*13*17*103*373 19 23 13 2 13 192313213 2^2* 3* 7* 13^2*19*23*31 47 7 3 13 3 4773133 2^2*3^2* 7*13*31*47 47 7 31 3 3 4773133 2^2*3^3* 7*13*31*47 53 2 3 3, 3 532333 2^2*3^4* 31* 53 Six primes : a b c d e f g factorization of g - 1 2 3 19 103 7 11 2319103711 2*3^4*5*7*11*19^2*103 101 19 37 59 61 3 101193759613 2^2*3^2*11*19*37*59*61*101 With repeated primes 2 2 3 2 7 3 223273 2^3*3^2*7*443 2 83 71 2 59 3 283712593 2^4*3*17*59*71*83 3 2 29 3 107 19 3229310719 2*3^2*17*19*29*107*179 5 2 2 23 3 41 52223341 2^2*3*5*13*23*41*71 11 2 3 11 11 11 1123111111 2*3*5*11^4*2557 13 3 5 3 2 101 133532101 2^2*3^2*5^2*13*101*113 19 2 3 13 2 13 192313213 2^2*3*7*13^2*19*23*31 19 2 31 3 2 13 192313213 2^2*3*7*13^2*19*23*31 97 2 2 19 3 7 97221937 2^4*3*7*19*97*157 Seven primes : I found no solutions with different primes, but : a b c d e f g h factorization of h - 1 2 3 61 2 2 41 13 2361224113 2^4*3*13*17*41*61*89 3 2 5 11 23 3 71 3251123371 2*3^2*5*11*23*71*2011 7 2 2 2 2 19 3 72222193 2^4*3^4*7*19*419 Eight primes : I found no solutions with different primes, but : 2 2 2 3 3 11 11 3 2223311113 2^3*3^3*11^2*257*331 2 2 3 7 2 2 2 41 223722241 2^8*3*5*7^2*29*41 2 2 23 3 2 2 41 7 2223322417 2^4*3^2*7*23*41*2339 3 3 11 2 2 2 11 3 3311222113 2^5*3^3*11^2*19*1667 3 3 13 7 7 7 19 41 33137771941 2^2*3^2*5*7^3*13*19*41*53 3 7 19 7 7 3 2 7 371977327 2*3^3*7^4*19*151 5 2 3 13 3 7 11 11 52313371111 2*3^2*5*7*11^3*13*4799 7 2 2 3 2 2 7 3 72232273 2^4*3^2*7^2*29*353 7 2 2 3 7 2 11 3 722372113 2^4*3^2*7^2*11*41*227 7 37 3 29 3 3 2 7 7373293327 2*3^3*7^4*29*37*53 11 2 2 3 2 7 3 7 112232737 2^5*3^3*7^2*11*241 11 3 2 3 37 3 29 3 11323373293 2^2*3^6*7*11*29*37*47 11 3 3 29 3 37 2 3 11332933723 2*3^4*11*29*37*5927 31 2 3 5 3 3 3 41 3123533341 2^2*3^4*5*31*37*41^2 31 11 5 3 3 2 7 11 31115332711 2*3^4*5*7^2*11^3*19*31 I guess that there are infinitely many concatenations of n primes that give solutions when we allow repetitions.
But I've no idea if all primes must be different.
*** Oscar wrote:
Unlike puzzle 1220, I only considered concatenations involving no
leading zeros.
Solutions below 10^13.
Two primes (rare!):
313 3 13
2916763 29 16763
Three primes:
1123 11 2 3
2113 2 11 3
2311 2 3 11
5741 5 7 41
224131 2 241 31
273253 2 7 3253
1311311 131 13 11
8773206313 877 32063 13
23203539823 2 3 203539823
90911909111 90911 9091 11
1312715766503 131 2 715766503
Four primes:
32719 3 2 7 19
273313 2 73 3 13
2512511 251 2 5 11
3611323 3 61 13 23
5215211 521 5 2 11
7213123 7 2 131 23
307924633 3079 2 463 3
321328411 3 2 13 28411
21491013809 2 149 1013 809
*** Paul Cleary sent his soluions to this puzzle a little bit later (Saturday 5, 2025, 3:06 am). This is why I couldn't publish his result together with the rest above, usually posted between 4-5 pm on each friday. The worst this is that he already got two examples with seven distinct primes...!!! (in bold-red below) Here are his results:
{2,313,{3,13},312
-- 2^3 * 3 * 13} Later Paul wrote this: "Thanks for your patience. It’s been a hectic weekend, and I apologize for the slow reply. After reviewing my work, I see that I misread the problem— d needed
to be prime—and some of my submitted results aren’t. To preserve the
integrity of your pages, please feel free to remove my submission. That
error is entirely on me.Thanks for your understanding.According with this all the submissions from Mr. Cleary to this puzzle and he next one, Puzzle 1228, must be forgotten. |
|||
|
|||