Problems & Puzzles: Puzzles

Puzzle 1162  n*2^(2n + 1) + 1
Sebastian Martin Ruiz. sent the following nice puzzle.

He comprobado que la siguiente expresión es compuesta desde n=1 hasta 6000

 
n*2^(2n + 1) + 1

Sin factores triviales, aunque muchos de ellos son divisibles por 2n+1 o un divisor de 2n+1

Q) Hallar un primo de esta forma o probar que no existe


From 10 to 16 Feb 2024, contributions came from Michael Branicky, Emmanuel Vantieghem, Giorgos Kalogeropoulos, V. F. Izquierdo, Alessandro Casini, Gennady Gusev

***

Michael Branicky wrote:

It is prime for n = 9248.

***

Emmanuel Vantieghem wrote:

About Puzzle 1162  I found that the expression
   n*2^(2n+1) + 1
is prime when  n = 9248.
I used Mathematica and Dario Alpern's Alpertron.

 

***

 Giorgos Kalogeropoulos wrote:

for n=9248 we get a 5573-digits prime.
for n=16146 we get a 9726-digit prime
I will stop my search here

***

 

V. F. Izquierdo wrote:

We have  r = n*2^(2n + 1) + 1

 
If n is of the form:
      10k+2  then r is multiple of 5
      10k+3  then r is multiple of 5
      3k+1   then r is multiple of 3

 
r is Prime with n=9248 o n=16146 for all n <= 25000.

***

Alessandro Casini wrote:

This sequence is essentially that of C_(2n), i.e. Cullen numbers with even indexes. Hence, any even value in OEIS A005849 gives a prime of that form. For example, n = 9248, 16146, 29828, ...

***

Gennady Gusev wrote:

There were found 3 primes for n<=60000:
 
9248*2^(2*9248+1)+1 is prime! [N-1, Brillhart-Lehmer-Selfridge] (digits:5573)
16146*2^(2*16146+1)+1 is prime! [N-1, Brillhart-Lehmer-Selfridge] (digits:9726)
29828*2^(2*29828+1)+1 is prime! [N-1, Brillhart-Lehmer-Selfridge] (digits:17964)

 

***

 

 

 

Records   |  Conjectures  |  Problems  |  Puzzles