Problems & Puzzles: Puzzles

Puzzle 1157 Interesting formulas?
Sebastian Martin Ruiz sent the followin three formulas:

Let q>p consecutive prime numbers

1) Floor((p^2+q^2)/(2p))=q (only fails for p=7 q=11)
2) Floor((p^2+q^2)/(2q))=p
3) Floor((p^2+q^2)/(p+q))=(p+q)/2 q>p>2

Q1. Are these formulas interesting?

Q2. Prove these formulas or find a counterexample


Contribution came from Emmanuel Vantieghem

***

Emmanuel wrote:

Formula 1  is equivalent to
   (p^2 + q^2)/(2p) = q + u  with  0 <= u < 1  or :
   (p^2 + q^2) - 2p q  < 2p  or :
   g < SQRT(2p), with  g = q - p.
As far as I know there is no proof for this up to now.
(following  Wikipedia this is stronger than Andrica's conjecture but weaker than Opperman's).

 
Formula 2  is equivalent to
   (p^2 + q^2)/(2q) = p + v  with  0 <= v < 1  or :
   (p^2 + q^2) - 2p q  < 2q  or :
    g < SQRT(2q), with  g = q - p.
This is weaker than Formula 1

 
Formula 3  is equivalent to
   (p^2 + q^2)/(p + q) = (p + q)/2 + w  with  0 <= w < 1  or :
   2p^2 + 2q^2 - (p + q)^2  < 2(p + q)  or :
    g < SQRT(2(p+q)), with  g = q - p.
This is weaker than Formula 2.

 
Are these formulas interesting ?
In my opinion : yes !  Of course !
Why not ?
_______________

 

***

Records   |  Conjectures  |  Problems  |  Puzzles