Problems & Puzzles: Puzzles

Puzzle 1147 Successive prime using the functions....

On Oct. 10, 2023, Sebastián Martín Ruiz wrote:

Let be the function F[n]=Prime[n]+PrimePi[n+1]! where PrimePi[n] is the prime counting function. F[n] is prime for n=1 to 13

Prime[1] + PrimePi[2]! = 2 + 1 != 2 + 1 = 3 Prime

Prime[2] + PrimePi[3]! = 3 + 2 != 3 + 2 = 5 Prime

Prime[3] + PrimePi[4]! = 5 + 2 != 5 + 2 = 7 Prime

Prime[4] + PrimePi[5]! = 7 + 3 != 7 + 6 = 13 Prime

Prime[5] + PrimePi[6]! = 11 + 3 != 11 + 6 = 17 Prime

Prime[6] + PrimePi[7]! = 13 + 4 != 13 + 24 = 37 Prime

Prime[7] + PrimePi[8]! = 17 + 4 != 17 + 24 = 41 Prime

Prime[8] + PrimePi[9]! = 19 + 4 != 19 + 24 = 43 Prime

Prime[9] + PrimePi[10]! = 23 + 4 != 23 + 24 = 47 Prime

Prime[10] + PrimePi[11]! = 29 + 5 != 29 + 120 = 149 Prime

Prime[11] + PrimePi[12]! = 31 + 5 != 31 + 120 = 151 Prime

Prime[12] + PrimePi[13]! = 37 + 6 != 37 + 720 = 757 Prime

Prime[13] + PrimePi[14]! = 41 + 6 != 41 + 720 = 761 Prime

Prime[14] + PrimePi[15]! = 43 + 6 != 43 + 720 = 763 Composite. 763=7·109

Q) Find Series with expressions with Prime[n] and PrimePi[n] that generate more than 13 successive prime numbers.


During the week from Oct 21 to Oct 27 contributions came from JM Rebert and Alain Rochelli, Oscar Volpatti

***

JM Rebert wrote:

The function:
F(n) = Prime(n + 496) - 30 * PrimePi(n + 648) 
is prime for n = 1 to 38.

 
n    F(n)
 1   7 = 3547 - 30 * 118
 2  17 = 3557 - 30 * 118
 3  19 = 3559 - 30 * 118
 4  31 = 3571 - 30 * 118
 5  11 = 3581 - 30 * 119
 6  13 = 3583 - 30 * 119
 7  23 = 3593 - 30 * 119
 8  37 = 3607 - 30 * 119
 9  43 = 3613 - 30 * 119
10  47 = 3617 - 30 * 119
11  23 = 3623 - 30 * 120
12  31 = 3631 - 30 * 120
13   7 = 3637 - 30 * 121
14  13 = 3643 - 30 * 121
15  29 = 3659 - 30 * 121
16  41 = 3671 - 30 * 121
17  43 = 3673 - 30 * 121
18  47 = 3677 - 30 * 121
19  61 = 3691 - 30 * 121
20  67 = 3697 - 30 * 121
21  71 = 3701 - 30 * 121
22  79 = 3709 - 30 * 121
23  89 = 3719 - 30 * 121
24  97 = 3727 - 30 * 121
25  73 = 3733 - 30 * 122
26  79 = 3739 - 30 * 122
27 101 = 3761 - 30 * 122
28 107 = 3767 - 30 * 122
29  79 = 3769 - 30 * 123
30  89 = 3779 - 30 * 123
31 103 = 3793 - 30 * 123
32 107 = 3797 - 30 * 123
33 113 = 3803 - 30 * 123
34 131 = 3821 - 30 * 123
35 103 = 3823 - 30 * 124
36 113 = 3833 - 30 * 124
37 127 = 3847 - 30 * 124
38 131 = 3851 - 30 * 124

Later he send this beter one:

The function:
F(n) = Prime(n + 6393) - 30 * PrimePi(n + 18579) 
is prime for n = 1 to 39.

 
n F(n) = Prime(n + 6393) - 30 * PrimePi(n + 18579)
1 11
2 23
3 31
4 13
5 19
6 23
7 29
8 13
9 29
10 31
11 43
12 47
13 53
14 61
15 67
16 73
17 89
18 109
19 137
20 157
21 167
22 173
23 179
24 193
25 197
26 223
27 227
28 241
29 251
30 269
31 283
32 311
33 313
34 317
35 331
36 347
37 349
38 347
39 353

 

***

Alain wrote:

Let be the function F(n)=[Prime(n+1)-PrimePi(n+5)]^2+Prime(n+1)-PrimePi(n+5)+41.

We get the following result n – F(n):

1 – 41  Prime
2 – 43  Prime
3 – 53  Prime
4 – 97  Prime
5 – 131  Prime
6 – 197  Prime
7 – 251  Prime
8 – 347  Prime
9 – 593  Prime
10 – 691  Prime
11 – 1033  Prime
12 – 1231  Prime
13 – 1373  Prime
14 – 1601  Prime
15 – 2111  Prime
16 – 2693  Prime
17 – 2903  Prime
18 – 3463  Prime
19 – 3947  Prime
20 – 4201  Prime
21 – 5011  Prime
22 – 5591  Prime
23 – 6521  Prime
24 - 7697=43*179

***

Oscar wrote:

I checked for variations of the function given by Sebastián Martín Ruiz:
F(n) = Prime(n+a) + PrimePi(n+b)!
The given example is the case a=0, b=1.

F(n) is prime from n=1 to n=15:
F(n) = Prime(n+63307) + PrimePi(n+14)!
List of generated primes:
792031, 792037, 796361,
796387, 831683, 831697,
831707, 831731, 1154299,
1154311, 1154323, 1154327,
1154353, 1154369, 4420319.

F(n) is prime from n=1 to n=16:
F(n) = Prime(n+513368) + PrimePi(n+23)!
List of generated primes:
7944059, 7944133, 7944169, 7944191,
7944193, 11210117, 11210141, 47498147,
47498149, 47498189, 47498203, 47498207,
47498261, 486583063, 486583079, 486583081.

 

***

Records   |  Conjectures  |  Problems  |  Puzzles