Problems & Puzzles: Puzzles

Puzzle 1021. p(k)+p(k+1)+1

Paolo Lava proposes the following nice puzzle:

Least prime p(k) such that p(k) + p(k+1) + 1 is squarefree and with n prime factors

1 5 -> 5 + 7 + 1 = 13.
2 2 -> 2 + 3 + 1 = 6 = 2*3.
3 191 -> 191 + 193 + 1 = 5*7*11.
4 1021 -> 1201 + 1213 + 1 = 2415 = 3*5*7*23.
5 20521 -> 20521 + 20533 +1 = 41055 = 3*5*7*17*23.
6 390001 -> 390001 + 390043 + 1 = 780045 = 3*5*7*17*19*23.

and

Least prime p(k) such that p(k) + p(k+1) + p(k+2) is squarefree and with n prime factors

1 5 -> 5 + 7 + 11 = 23.
2 2 -> 2 + 3 + 5 = 10 = 2*5.
3 331 -> 331 + 337 + 347 = 1015 = 5*7*29.
4 3049 -> 3049 + 3061 + 3067 = 9177 = 3*7*19*23.
5 35227 -> 35227 + 35251 + 35257 = 105735 = 3*5*7*19*53.
6 299903 -> 299903 + 299909 + 299933 = 899745 = 3*5*7*11*19*41.

Q. Find terms for n>6. Is there a demonstration that such numbers exist for any n?

 


On the week 24-30 October 2020 contributions came from V. F. Izquierdo, Giorgos Kalogeropoulos, PaulCleary, Oscar Volpatti, Emmanuel Vantieghem.

***

Vicente wrote:

For prime[k]+prime[k+1]+1:
7, 2.424.937, 3*5*7*11*13*17*19
8, 205.307.611, 3*5*7*11*13*23*29*41
9, 4.071.444.907, 3*5*7*11*13*17*19*23*73
10, 74.345.698.897, 3*5*7*11*13*17*19*23*31*43
11, 5.444.525.719.111, 3*5*7*11*13*17*19*23*31*47*67
12, 87.193.673.083.987, 3*5*7*11*13*17*19*23*29*31*37*47

 
For prime[k]+prime[k+1]+prime[k+2]:
 
7, 7.234.517, 3*5*7*11*19*23*43
8, 158.055.193, 3*5*7*11*17*19*31*41
9, 1.524.467.891, 3*5*7*11*13*17*19*23*41

***

Giorgos wrote:

I have found 100 terms for each case. See this file.

***

Paul wrote:

I think these are the minimum prime p(k) for both types up to 20 primes each

 

7 -> 2424907 + 2424937 + 1 = 4849845 = 3 x 5 x 7 x 11 x 13 x 17 x 19

8 -> 158055193 + 158055199 + 158055223 = 474165615 = 3 x 5 x 7 x 11 x 17 x 19 x 31 x 41

9 -> 4071444847 + 4071444907 + 1 = 8142889755 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 73

10 -> 74345698897 + 74345698957 + 1 = 148691397855 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 31 x 43

11 -> 5444525719111 + 5444525719153 + 1 = 10889051438265 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 31 x 47 x 67

12 -> 87193673083987 + 87193673084047 + 1 = 174387346168035 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 47

13 -> 6428314689524191 + 6428314689524263 + 1 = 12856629379048455 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 41 x 53 x 59

14 -> 219136252305472951 + 219136252305473053 + 1 = 438272504610946005 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 67

15 -> 15506131856082359923 + 15506131856082360061 + 1 = 31012263712164719985 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53 x 59

16 -> 1052297628357522954853 + 1052297628357522954961 + 1 = 2104595256715045909815 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 59 x 67 x 71

17 -> 48549698841393869136463 + 48549698841393869136571 + 1 = 97099397682787738273035 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 x 59 x 101

18 -> 2829235940486873030746081 + 2829235940486873030746183 + 1 = 5658471880973746061492265 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 x 67 x 71 x 73

19 -> 198422619164776743160946947 + 198422619164776743160947097 + 1 = 396845238329553486321894045 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 x 59 x 61 x 67 x 101

20 -> 19916760708314661900454948627 + 19916760708314661900454948777 + 1 = 39833521416629323800909897405 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 x 59 x 71 x 79 x 83 x 89

 

 

7 -> 7234517 + 7234541 + 7234547 = 21703605 = 3 x 5 x 7 x 11 x 19 x 23 x 43

8 -> 158055193 + 158055199 + 158055223 = 474165615 = 3 x 5 x 7 x 11 x 17 x 19 x 31 x 41

9 -> 1524467891 + 1524467963 + 1524467981 = 4573403835 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 41

10 -> 146981019161 + 146981019173 + 146981019221 = 440943057555 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 59 x 67

11 -> 2924264157767 + 2924264157791 + 2924264157887 = 8772792473445 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 31 x 43 x 59

12 -> 124113516642097 + 124113516642109 + 124113516642139 = 372340549926345 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 47 x 79

13 -> 4535946133123387 + 4535946133123399 + 4535946133123429 = 13607838399370215 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 47 x 59

14 -> 132476253972317237 + 132476253972317261 + 132476253972317267 = 397428761916951765 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53

15 -> 7276195760630481613 + 7276195760630481709 + 7276195760630481733 = 21828587281891445055 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 71

16 -> 711930353432117784941 + 711930353432117784953 + 711930353432117785001 = 2135791060296353354895 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 59 x 61 x 83

17 -> 37511148993323851080139 + 37511148993323851080259 + 37511148993323851080307 = 112533446979971553240705 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53 x 59 x 61 x 71

18 -> 3130872412489286082022393 + 3130872412489286082022399 + 3130872412489286082022423 = 9392617237467858246067215 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53 x 59 x 61 x 71 x 97

19 -> 185807294787963924506776321 + 185807294787963924506776333 + 185807294787963924506776381 = 557421884363891773520329035 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 59 x 61 x 67 x 73 x 103

20 -> 11071065345213582903890991271 + 11071065345213582903890991301 + 11071065345213582903890991313 = 33213196035640748711672973885 = 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 x 59 x 61 x 67 x 79 x 107

 

I see no reason that there wouldn’t be a solution for any n.  All of the solutions above were the first of many solutions for each p(k), going forward, there’s bound to be a smallest solution for any p(k).

***

Oscar wrote:

I solved puzzle 1021 by enumerating odd squarefree numbers x and checking if they satisfy the desired equalities.

 
Equality x = p(k)+p(k+1)+1.
Given m2 = (x-1)/2, I found the two primes closest to m2, with p1 <= m2 < p2;
the only candidate pair of consecutive primes is (p1,p2).

 
Equality x = p(k)+p(k+1)+p(k+2).
Given m3 = floor(x/3), I found the four primes closest to m3, with p0 < p1 <= m3 < p2 < p3;
the only candidate triplets of consecutive primes are (p0,p1,p2), and (p1,p2,p3).

 
I checked odd squarefree numbers with prime factors not exceeding p(41) = 179;
for 7 <= n <= 40, I stored the smallest solution x with n factors, along with the related first prime p(k). 

 
The smallest odd squarefree number with n factors and out of this search is:
y = p(2)*p(3)*...*p(n)*181.
If y < x, then p(k) may not be minimal, and is listed with a question mark.

 

 
Equality x = p(k)+p(k+1)+1.
n  p(k)
01 5
02 2
03 191
04 1201
05 20521
06 390001
07 2424907
08 205307593
09 4071444847
10 74345698897
11 5444525719111
12 87193673083987
13 6428314689524191
14 219136252305472951
15 15506131856082359923
16 1052297628357522954853
17 48549698841393869136463
18 2829235940486873030746081
19 198422619164776743160946947
20 19916760708314661900454948627
21 1223562158599081691927806997137
22 115091894953327929993618204795283
23 8935674444249093596148774500752333
24 788162890171289663958107736305281963
25 83965729674895371306294451998157417507
26 8252204134951996821797540860837187913457
27 994146448716049092572281397739957191191867
28 91562743803782414676909980818950030486403663
29 12434892628691661325342187578558874323763618731
30 1511446749406898849706820771504946983152446540221 ?
31 240033830267457311016625805430550282925011330314547 ?
32 26436509654512070726009420604773599825447945987648963 ?
33 2935948568431057519791375900106007606745885878546170057
34 537145492054436878640008552615886882534036758094445893737 ?
35 79725012068889856270623717911279673627377713402021296665743 ?
36 10660714038984307666941905656747223902832165975931362729610253 ?
37 1883469429517692238987645577235708103786868136484463268712109851 ?
38 452937492829625345846838408588164983731173084900094178054653099007 ?
 
Equality x = p(k)+p(k+1)+p(k+2).
n  p(k)
01 5
02 2
03 331
04 3049
05 35227
06 299903
07 7234517
08 158055193
09 1524467891
10 146981019161
11 2924264157767
12 124113516642097
13 4535946133123387
14 132476253972317237
15 7276195760630481613
16 711930353432117784941
17 37511148993323851080139
18 3130872412489286082022393
19 185807294787963924506776321
20 11071065345213582903890991271
21 911024385458544953432961429287
22 73360943039347367332627440456697
23 4916024930368658091118484684618267
24 541149395986761160884132521968599251
25 56716179621663208397233957806441154009
26 7426884816150875644452121061900231920621 ?
27 480644324429304014052020896687401734836669
28 76004541555243324243672181504799118603524003
29 6718344946510775967205173814257750896888656679
30 943419964107509612258113580435230501844386261691 ?
31 149081959366332492239352742202974859684585038244029 ?
32 21268456061231687301380236091777509157769070424044069 ?
33 2713738906345350356232937966320751370838501451156715087 ?
34 408410765776958712982475163385681271055072647607811545331 ?
35 62326987852417489554492402971408090173921186016927920175023 ?
36 10848429162469733103836683865434487827407493418190555919091773 ?
37 1482490453810903337676088090159839206199813568437188144846472571 ?
38 263363474625361792072248895728988305415059361078573828505874458453 ?
 
He sent attached files w2.txt and w3.txt contain all primes and sum factorizations, available on request.

***

Emmanuel wrote:

Solutions first kind :
n         p(k)             Prime factors of  p(k)+p(k+1)+1
7   2424907           3, 5, 7, 11, 13, 17, 19
8   205307593       3, 5, 7, 11, 13, 23, 29, 41
9   4071444847     3, 5, 7, 11, 13, 17, 19, 23, 73

Solutions second kind :
n         p(k)             Prime factors of  p(k)+p(k+1)+p(k+2)
7   7234517           3, 5, 7, 11, 19, 23, 43
8   158055193       3, 5, 7, 11, 17, 19, 31, 41
9   1524467891     3, 5, 7, 11, 13, 17, 19, 23, 41

I cannot imagine any reason why there would not be a solution for every  n.

***

Seiji Tomita wrote on November 14, 2020:

About Puzzle 1021.

Search range: p(k)<10^10

n=7
2424907 + 2424937 + 1 = 3*5*7*11*13*17*19

n=8
205307593 + 205307611 + 1 = 3*5*7*11*13*23*29*41

n=9
4071444847 + 4071444907 + 1 = 3*5*7*11*13*17*19*23*73


n=7
7234517 + 7234541 + 7234547 = 3*5*7*11*19*23*43

n=8
158055193 + 158055199 + 158055223 = 3*5*7*11*17*19*31*41

n=9
1524467891 + 1524467963 + 1524467981 = 3*5*7*11*13*17*19*23*41

***

Records   |  Conjectures  |  Problems  |  Puzzles