Problems & Puzzles: Puzzles Puzzle 44.- Enoch Haga Puzzle about Consecutive Primes A. Find sets of k consecutive odd primes such that: P1 + Pk + 1 = prime Observe that when k is odd the central prime is simply ignored. Just to offer an interesting point of start, I have calculated the first elementary examples: k: primes 2 : 5 7 *** B. Now, lets add the condition that: P1 + Pk + 1 = P2 + Pk-1 + 1 = P3 + Pk-2 + 1 = the same prime In this case I have obtained solutions for k=2 to 13: k: primes (the same prime) 2 : 5 7 (the same prime = 13) *** Question to A : Find a set for k=17, 19, 21, and so on . Question to B: Find an example for k=>14 Solution Felice Russo (7/03/99) has found the least solution to k=17, 19 & 21 for Question A For k=17 the consecutive primes are:
210097 210101 210109 210113 210127 *** Felice Russo (16/04/99) wrote: *** Sudipta Das has found (12/12/2002) more solutions to Question A and the first asked solutions to Question B: For Question A: For k=22 : 16697669 16697683 16697687 16697699 16697711 16697729 16697741 16697749 16697771 16697773 16697797 16697843 16697867 16697869 16697873 16697899 16697909 16697911 16697929 16697951 16697969 16697981 ( Sudipta Das - 6/12/02 ) For k=23 : 2614133 2614159 2614163 2614169 2614177 2614181 2614193 2614211 2614219 2614223 2614237 2614279 2614301 2614303 2614307 2614327 2614333 2614351 2614361 2614363 2614369 2614373 2614393 ( Sudipta Das - 6/12/02 ) For Question B: For k=14 : 136450033 136450049 136450063 136450073 136450079 136450081 136450129 136450151 136450199 136450201 136450207 136450217 136450231 136450247 ( 272900281 ) ( Sudipta Das - 6/12/02 ) For k=15 : 1169151281 1169151293 1169151307 1169151311 1169151323 1169151337 1169151349 1169151359 1169151371 1169151383 1169151397 1169151409 1169151413 1169151427 1169151439 ( 2338302721 ) ( Sudipta Das - 6/12/02 ) *** Gennady Gusev wrote on Dec 12, 2025:
For Question A:
k=24, primes: 81694678441 81694678463 81694678469
81694678487 81694678493 81694678543 81694678553 81694678579 81694678589
81694678591 81694678633 81694678649 81694678717 81694678733 81694678739
81694678753 81694678757 81694678783 81694678799 81694678817 81694678859
81694678867 81694678883 81694678889
k=25, primes: 11774661169 11774661179 11774661187
11774661191 11774661203 11774661221 11774661253 11774661263 11774661277
11774661281 11774661307 11774661343 11774661373 11774661407 11774661443
11774661467 11774661473 11774661487 11774661497 11774661527 11774661553
11774661557 11774661593 11774661611 11774661623
k=26, primes: 2001623354051 2001623354089 2001623354141
2001623354201 2001623354249 2001623354273 2001623354317 2001623354323
2001623354327 2001623354371 2001623354383 2001623354387 2001623354429
2001623354431 2001623354443 2001623354459 2001623354477 2001623354503
2001623354519 2001623354531 2001623354587 2001623354593 2001623354639
2001623354719 2001623354771 2001623354779
k=27, primes: 234361988977 234361988989 234361989011
234361989073 234361989079 234361989139 234361989149 234361989161
234361989163 234361989181 234361989221 234361989223 234361989227
234361989247 234361989259 234361989263 234361989271 234361989311
234361989347 234361989349 234361989371 234361989413 234361989473
234361989479 234361989481 234361989503 234361989539
k=28, primes: 6568310280967 6568310280971 6568310280977
6568310280991 6568310281003 6568310281007 6568310281009 6568310281031
6568310281067 6568310281111 6568310281129 6568310281151 6568310281177
6568310281229 6568310281237 6568310281271 6568310281301 6568310281319
6568310281367 6568310281381 6568310281387 6568310281409 6568310281411
6568310281427 6568310281439 6568310281501 6568310281517 6568310281523
k=29, primes: 234361988951 234361988977 234361988989
234361989011 234361989073 234361989079 234361989139 234361989149
234361989161 234361989163 234361989181 234361989221 234361989223
234361989227 234361989247 234361989259 234361989263 234361989271
234361989311 234361989347 234361989349 234361989371 234361989413
234361989473 234361989479 234361989481 234361989503 234361989539
234361989541
k=31, primes: 1545440400599 1545440400641 1545440400659
1545440400689 1545440400719 1545440400733 1545440400761 1545440400817
1545440400827 1545440400853 1545440400883 1545440400913 1545440400937
1545440400967 1545440400971 1545440400979 1545440401007 1545440401031
1545440401061 1545440401097 1545440401133 1545440401157 1545440401163
1545440401223 1545440401237 1545440401277 1545440401279 1545440401289
1545440401319 1545440401429 1545440401441
k=33, primes: 1545440400593 1545440400599 1545440400641
1545440400659 1545440400689 1545440400719 1545440400733 1545440400761
1545440400817 1545440400827 1545440400853 1545440400883 1545440400913
1545440400937 1545440400967 1545440400971 1545440400979 1545440401007
1545440401031 1545440401061 1545440401097 1545440401133 1545440401157
1545440401163 1545440401223 1545440401237 1545440401277 1545440401279
1545440401289 1545440401319 1545440401429 1545440401441 1545440401447
k=35, primes: 1545440400589 1545440400593 1545440400599
1545440400641 1545440400659 1545440400689 1545440400719 1545440400733
1545440400761 1545440400817 1545440400827 1545440400853 1545440400883
1545440400913 1545440400937 1545440400967 1545440400971 1545440400979
1545440401007 1545440401031 1545440401061 1545440401097 1545440401133
1545440401157 1545440401163 1545440401223 1545440401237 1545440401277
1545440401279 1545440401289 1545440401319 1545440401429 1545440401441
1545440401447 1545440401469
For Question B:
k=16, primes: 74422046563 74422046579 74422046603
74422046623 74422046651 74422046663 74422046681 74422046683 74422046687
74422046689 74422046707 74422046719 74422046747 74422046767 74422046791
74422046807
k=17, primes: 13977870089 13977870091 13977870103
13977870139 13977870149 13977870157 13977870161 13977870191 13977870197
13977870199 13977870229 13977870233 13977870241 13977870251 13977870287
13977870299 13977870301
k=18, primes: 74422046551 74422046563 74422046579
74422046603 74422046623 74422046651 74422046663 74422046681 74422046683
74422046687 74422046689 74422046707 74422046719 74422046747 74422046767
74422046791 74422046807 74422046819
k=19, primes: 3300260211491 3300260211503 3300260211527
3300260211529 3300260211533 3300260211551 3300260211571 3300260211583
3300260211593 3300260211601 3300260211607 3300260211617 3300260211629
3300260211649 3300260211667 3300260211671 3300260211673 3300260211697
3300260211709
k=21, primes: 4145811882109 4145811882137 4145811882161
4145811882169 4145811882181 4145811882211 4145811882227 4145811882269
4145811882283 4145811882287 4145811882323 4145811882343 4145811882347
4145811882361 4145811882403 4145811882419 4145811882449 4145811882461
4145811882469 4145811882493 4145811882521
I didn't find any solutions up to 2*10^13.
***
|
|||
|
|||
|
|
|||