Problems & Puzzles: Conjectures

Conjecture 96. OEIS A360827

Alain Rochelli sent the following conjecture:

In Puzzle 1122 OEIS A005385, we have proven that, for any Safe prime p>7, A(p) = (2^(p-1) - 1) / 3 has as smallest prime factor p.

OEIS A359387 is relative to primes p such that the smallest prime factor of A(p) is p. Of course, all Safe primes (> 7) are included in A359387.

Let q be the A359387 primes which are not Safe primes. The first suitable primes q are as follows :

443, 647, 1847, 2243, 2687, 2699, 6263, 6563, 7487, 7583, 8627, 8663, 9419

The corresponding sequence is now published as OEIS A360827, equals A005385 subtracted from A359387.

For any value of q, it is conjectured that q = 2*u*v + 1 where u and v are distinct primes not in A005384 = non-Sophie Germain primes (cf. A053176).

For example :

443 = 2*13*17 + 1 (13 and 17 in A053176)

647 = 2*17*19 + 1 (17 and 19 in A053176)

1847 = 2*13*71 + 1 (13 and 71 in A053176)

2243 = 2*19*59 + 1 (19 and 59 in A053176)

2687 = 2*17*79 + 1 (17 and 79 in A053176)

- - -

9419 = 2*17*277 + 1 (17 and 277 in A053176)
 


Q : Can you get an explanation of this or find a counterexample ?


During the week from 18-24 March, 2023 contribution came from Emmanuel Vantieghemm Oscar Volpatti

***

Emmanuel wrote:

The conjecture is not true.
I found a lot of  counterexamples :
   41039 = 2*(17^2)*71 + 1
   72923 = 2*(19^2)*101 + 1
   1516583 = 2*31*61*401 + 1
   1902347 = 2*31*61*503 + 1
   2039243 = 2*(31^2)*1061 + 1
   2235287 = 2*(31^2)*1163 + 1
   2638907 = 2*(31^2)*1373 + 1
   2984867 = 2*(31^2)*1553 + 1
   3817259 = 2*61*67*467 + 1
   4398467 = 2*31*61*1163 + 1
   4657007 = 2*(31^2)*2423 + 1
   5488139 = 2*(101^2)*269 + 1
   5533439 = 2*(31^2)*2879 + 1
   6821303 = 2*31*269*409 + 1
   7367027 = 2*(31^2)*3833 + 1
   7484579 = 2*31*61*1979 + 1
   7684283 = 2*101*109*349 + 1
   8151203 = 2*(31^2)*4241 + 1
   8181203 = 2*(101^2)*401 + 1
   8655047 = 2*(61^2)*1163 + 1
   8693207 = 2*(31^2)*4523 + 1
   8799227 = 2*31*347*409 + 1
   9223679 = 2*(31^2)*4799 + 1
   9815999 = 2*(61^2)*1319 + 1
   10284623 = 2*(31^2)*5351 + 1
   11102087 = 2*109*127*401 + 1
   11703059 = 2*(31^2)*6089 + 1
   12996539 = 2*61*307*347 + 1
   13663499 = 2*(31^2)*7109 + 1
   15769763 = 2*31*347*733 + 1
   16684883 = 2*(31^2)*8681 + 1
   17030843 = 2*(31^2)*8861 + 1
   17105987 = 2*31*61*4523 + 1
   17332907 = 2*31*61*4583 + 1
   18149819 = 2*31*61*4799 + 1
   18841367 = 2*(31^2)*9803 + 1
   19417967 = 2*(31^2)*10103 + 1
   21274619 = 2*(31^2)*11069 + 1
   23358047 = 2*(109^2)*983 + 1
   23530763 = 2*(103^2)*1109 + 1
   23604083 = 2*(31^2)*12281 + 1
   23684807 = 2*(31^2)*12323 + 1
   24740363 = 2*127*257*379 + 1
   25343183 = 2*31*61*6701 + 1
   26037119 = 2*61*457*467 + 1
   26543003 = 2*(101^2)*1301 + 1
   27696083 = 2*31*103*4337 + 1
   27905519 = 2*(31^2)*14519 + 1
   28355267 = 2*(31^2)*14753 + 1
   29267039 = 2*31*103*4583 + 1
   29797403 = 2*61*467*523 + 1
   30445223 = 2*(61^2)*4091 + 1
   30508883 = 2*109*349*401 + 1
   30673199 = 2*(31^2)*15959 + 1
   31030823 = 2*61*347*733 + 1
   31999379 = 2*(31^2)*16649 + 1
   32103167 = 2*(31^2)*16703 + 1
   32388479 = 2*101*109*1471 + 1
   32483723 = 2*(31^2)*16901 + 1
   32910407 = 2*(31^2)*17123 + 1
   33030839 = 2*(101^2)*1619 + 1
   33466919 = 2*31*61*8849 + 1
   35228339 = 2*(31^2)*18329 + 1
   36035579 = 2*(31^2)*18749 + 1
   36865883 = 2*(31^2)*19181 + 1
   (the next one is > 37000000)


I printed all of them because they seem to be either of type  2*p^2 r  or  2*p*r*t  (p, r, t  primes). This could be a conjecture.
 
However, it is perfectly provable that every odd prime divisor  p  of  q - 1  is a non-Sophie Germain prime..

There is an even stronger result :

When  q  is a prime such that every prime divisor  of  (2^(q-1) - 1)/(3q)  is > q, then every proper divisor  d  of  q-1  has the property that  2d + 1  is NOT a prime number.

Proof :
 Let  d  be a proper divisor of  q - 1.
 Then  2^d - 1  divides  2^(q-1) - 1.
 So, if  2d + 1  is prime, then, by Fermat's little theorem, it is a divisor of   2^(2d) - 1 and thus also of   2^(q-1) - 1  which has no divisors (except  3  and  q) of that kind.
 This proves what we wanted.

***

Oscar wrote:

Conjecture 96 is false.
I checked all primes q < 6*10^9, finding 2049 counterexamples q = 2*t+1 such that t has three odd prime factors (counted with multeplicity); I'm sending the first counterexample for each of the four possible forms.

small prime repeated:
q_1 = 41039 = 2*17^2*71+1;
three distinct primes:
q_3 = 1516583 = 2*31*61*401+1;
large prime repeated:
q_657 = 549397727 = 2*503*739^2+1;
prime cube:
q_1615 = 3991233959 = 2*1259^3+1.
 

***

 

Records   |  Conjectures  |  Problems  |  Puzzles