Problems & Puzzles: Puzzles

Puzzle 801. A nice stepladder of primes

Vic Bold propose to find large steps of primes using the following scheme:

Scheme #1
p+np(p)+1=q
q+np(q)+1=r
and so on...

where np(x) is the next larger prime to x.

I add the following scheme:

Scheme #2
p+np(p)-1=q
q+np(q)-1=r
and so on...

Q. Find the prime p generating the largest stepladder you may produce using both schemes.

 


Contributions came from Abhiram R. Devesh, Jeff Heleen, Dmitry Katmenesky and Emmanuel Vantieghem

***

Abhiram wrote:

The largest prime I can find that can produce 4 step primes with both the schemes is 818625751
 
p=q+np(q)-1
818625751, 1637251541, 3274503083, 6549006173, 13098012353
p=q+np(q)+1
818625751, 1637251543 , 3274503091, 6549006199, 13098012451

 

***

Jeff wrote:

For puzzle 801 I found these for the earliest instance of n steps where pi is not already part of an earlier sequence.


 

+1

steps, n

pi

1

2

3

4

5

6

0

3

 

 

 

 

 

 

1

29

61

 

 

 

 

 

2

5

13

31

 

 

 

 

3

23

53

113

241

 

 

 

4

17

37

79

163

331

 

 

5

111949

223903

447823

895651

1791319

3582643

 

6

4035869

8071757

16143541

32287093

64574197

129148399

258296803

***

Dmitry wrote:

 

For both schemes I was able to find primes that produce stepladders of 9 primes (including the first one).
 
+1 version: 48558202601, 65310442037, 153993046523

 
-1 version: 20178627149, 41425492699, 42539054641, 86688170083, 124626849817, 133888707709, 143529489043, 176011837933
 
I could not find any solutions of 10 primes. I definitely searched all the primes up to the ones I found, so up to 176011837933.
 

***

Emmanuel wrote:

For scheme2, my smallest  p  that gives a chain of  8  primes is  843315047  and the chain is :
843315047, 1686630137, 3373260287, 6746520587, 13493041181, 26986082369, 53972164751, 107944329529

For scheme 2, my smallest  p  that gives a chain of  8  primes is  412368577  and the chain is :
412368577, 824737189, 1649474401, 3298948813, 6597897643, 13195795309, 26391590629, 52783181291

 
For eventually longer chains, p  should be choosen > 2^32.

***

Records   |  Conjectures  |  Problems  |  Puzzles