Problems & Puzzles: Puzzles

Puzzle 557.- H(m, a)

Emmanuel Vantieghem sent the following nice puzzle:

Consider the function  H(m,a), defined for all natural numbers  m, a  by the rule to intertwine the digits of  m  by  a.  For instance,
      H(123,8) = 18283
      H(468025,12) = 4126128120122125
      H(402,402) = 440204022
               . . .

Examples of primes m by Emmanuel:

m = 13, H(m,j)  is prime for  j = 0, 1 (but not for j = 2)
m = 1069, H(m,j)  is prime for  j = 0, 1, 2 (but not for  j = 3)
m = 1979, H(m,j)  is prime for  j = 0, 1, 2, 3 (but not for  j = 4)
m = 3049, is prime for  j = 0, 1, 2, 3, 4 (but not for  j = 5).

One more was found by C. Rivera:

2381963 is a prime m &  gives primes for H(m,j), j=0 to 5, fails for j=6

Q1.Find a prime number  m  such that  H(m,0), H(m,1), H(m,2), ... , H(m,k)  are all prime for k as big as possible.

Q2. Another question is : Can  H(m,m)  be prime ?  Prove your answer.


Contributions came from Jan van Delden, Seiji Tomita, J-C Colin, J. K. Andersen, Farideh Firoozbakht.

***

Jan van Delden wrote:

Q1:
 
The first sequences with H(a,j) prime, j=0..b, H(a,j+1) composite:
 
a=1194307993 with b=6
a=1046197333 with b=7
 
Assume a has k digits and b has l digits and a=a[k-1]...a[0].
 
H(a,b)=sum(a[i].10^(i.(l+1)),i=0..k-1)+10b.sum(10^(i.(l+1)),i=0..k-2) rewrite to H(a,b)=T(a)+T(b) with
T(a)=sum(a[i].(10^(l+1))^i,i=0..k-1) and T(b)=10b.sum((10^(l+1))^i,i=0..k-2).
 

H(a,b) mod 3=(a+b.(k-1)) mod 3 (count powers of 10) With fixed a and thus fixed T(a) mod 3, only two residue classes of b mod 3 are allowed. So we should
 
have (k-1)=0 mod 3, or k=1 mod 3, to allow for b>1.
 
If b<10, l=1: T(b)=10b.(100^(k-1)-1)/99 with the small divisors 2,3,5,7,13,37,. (and divisors of b).
so T(b)=0 mod q for all primes <10 and H(a,b) mod q=T(a) mod q. There are q-1 free residues for each of these q to choose from.
 
If 10<=b<100, l=2 and we have: T(b)=10b.(1000^(k-1)-1)/999
T(b)=0 mod 11 iff k=odd. [T(b)=1 mod 11 iff k even (disallowed, because there are no free residues left for T(a), remark: b=10 already uses the 11 residues,
 
so T(11)=0 mod 11 doesn't help].
 
We also have 13|T(b) for each k=1 mod 6 [the order of 10 mod 13=6].
So k=1 mod 6 suffices for b<17 (the b<10 are also divisors of T(b), since 10^(3k)-1|10^(6k)-1) and 2,5 are divisors of 10).
 
We have 17|T(b) if k=1 mod 48 [the order of 10 mod 17=16]. Also we have for these k: 19|T(b). 
So k=1 mod 48 suffices for b<23.
 
We have 23|T(b) if k=1 mod 528,
So k=1 mod 528 suffices for b<29.
 
Our k rapidly increases with solutions with increasing b. One would need a clever sieve to reduce the number of "isprime"-checks.
 
Q2:
 
Split T(a) and T(b):
 
T(a)=sum(a[i].10^i.(10^((i.l)-1),i=0..k-1)+sum(a[i].10^i,i=0..k-1)
T(b)=10b.sum(10^i.(10^(i.l)-1),i=0..k-2)+10b.sum(10^i,i=0..k-2).
 
The second term of T(a) equals a, the second term of T(b) equals 10b.(10^(k-1)-1)/9.
The sum of these is: (9(a-b)+b.(10^k-1))/9.
The other two terms are 0 mod 10^l-1. They are (at least) 0 mod (10^l-1)/9.
 
And we see that H(a,b) = 0 mod (10^l-1)/9 if (sufficient, not necessary):
- 9(a-b)=0 mod (10^l-1)/9 and
- l|k.
 
We have a=b, hence k=l so (10^k-1)/9, is a divisor of H(a,a).

***

Seiji Tomita wrote:

Q2.

H(m,m) is always composite for all m > 1.

For example,let m=a1a2a3a4a5(5 digits).

H(m,m)=a1*10^(4+4*5)+a2*10^(3+3*5)+a3*10^(2+2*5)+a4*10^(1+1*5)+a5
     +m*(10+10^7+10^13+10^19).

Coefficient of a1=a1*10^(4+4*5)+a1*10^4*(10+10^7+10^13+10^19).
                =a1*10^4*(10+10^7+10^13+10^19+10^20).

Here,we take a prime p such that 10^5=1 mod p.
In this case(m=5 digits),p=41,271.
Then 10+10^7+10^13+10^19+10^20=(10^5-1)/9=0 mod p.
So,coefficient of a1=0 mod p.
Similarly, other coefficient of a2,a3,a4,a5=0 mod p.
Consequently,H(m,m) is composite.

In the same way,it is obvious that m=a1a2a3...an(n digits) is divisible by
p such that (10^n-1)/9=0 mod p.
Hence, H(m,m) is always composite for all m > 1.
By the way,(10^n-1)/9  is defined as repunit.

Numerical examples.
H(23459,23459)=2234593234594234595234599=0 mod 41.
(10^5-1)/9= (41)*(271)

H(1234577,1234577)=1123457721234577312345774123457751234577712345777=0
mod 239.
(10^7-1)/9= (239)*(4649)

H(1234567890123456817,1234567890123456817)=0 mod 1111111111111111111.
(10^19-1)/9= (1111111111111111111)=R(19).
 

***

J-C Colin wrote:

m, minimal prime such as H(m,i) prime for i = 0 to k
 
 k        m
 0       11
 1       13
 2       1069
 3       1979
 4       3049
 5       2381963
 7       1046197333
 
and such as  H(m,i) prime for i = 1 to k
 
 k        m
 1       13
 2       1021
 3       1979
 4       3049
 5       5701
 6       2335667
 7       1041293663
 8       2459868287

***

J. K. Andersen wrote:

Q1.
H(m,j) for j = 0, 1, 2 can only give three primes if the number of digits
in m is 1 modulo 3. Otherwise 3 will divide one of the three numbers.

m = 1046197333 is the smallest prime for k=6, and also for k=7.
m = 1194307993 is the smallest which only works to k=6.
m = 5769213841 is the smallest for k=8.
There is no prime below 10^12 for k=9.

Q2.
If m has n digits then it seems H(m,m) is divisible by the repunit (10^n-1)/9.

 

***

Farideh wrote:

Answer to Q1 :
 
1046197333 is the smallest number m such that H(m, k) for k = 0, 1, ... , 6 is prime.
Also 1046197333 is the smallest number m such that H(m, k) for k = 0, 1, ... , 7 is prime.
 

***

Emmanuel Vantieghem wrote:

Because the numbers  H(m,k)  form an arithmetic progression when  k  runs from  0  to 9, I first searched for the natural numbers  m  such that  H(m,k)  is prime for  k = 0, 1, …  9. Here is what I found :

            H(13,k)       is prime for   0 <= k < 2   (and not for  k = 2)

            H(1069,k)       “     “        0 <= k < 3    (    “      “       k = 3)

            H(1979,k)       “     “        0 <= k < 4    (    “      “       k = 4)

            H(3049,k)       “     “        0 <= k < 5    (    “      “       k = 5)

            H(1043809,k)       “     “   0 <= k < 6    (    “      “       k = 6)

            H(4585547,k)       “     “   0 <= k < 7    (    “      “       k = 7)

Then I used the fact that, when  a, a+d, a+2d, ... , a+(k-1)d  are all primes, then the common difference  d  must be divisible by every prime divisor  p <= k  (unless  a = k  which is never the case in our situation).  In our case, a = H(m,0)  and  d  is of the form  1010…10  where the number of ‘ones’ is one less than the number of digits in  m,  To be divisible by  3  and  7  m  must have  4, 7, 10, 13, …  digits.  So, I could skip a lot of possible values for  m.  The results then continue as follows :

            H(1046197333,k)    is prime for   0 <= k < 8  (and not for  k = 8)

            H(3379142501,k)          “     “       0 <= k < 9  (    “      “       k = 9)

            H(7691546233,k)          “     “       0 <= k < 10 (    “      “       k = 10).

I did not find further results for  m  below  10^10.  The next candidate must be bigger than  10^12.

If we require  m  to be prime, the list looks the same for  k < 5  and further :

            H(2381963,k)          is prime for   0 <= k < 6 (and not for  k = 6)

            H(1046197333,k)       “     “          0 <= k < 8  (    “       “     k = 8)

            H(5769213841,k)       “     “          0 <= k < 9  (    “       “     k = 10).

For bigger  k, we must start the computations from  10^12  and this will take much more time …

 

About the primality of  H(m,m) : this happens only if  m  is  2, 3, 5  or  7.  For  m >= 11  we can prove  H(m,m)  to be divisible by the repunit  R_n  of  n  ‘ones’, where  n  is the number of digits of  m.  For instance,  H(13,13) = 1133 = 11x103,  …

Proof:

Assume  m  has  n  digits.  Thus, m can be written in the form
a(n-1)10^(n-1)+a(n-2)10^(n-2)+ ... +a(1)10+a(0)   with  0 <= a(i) < 10.

Hence, it is easy to see that H(m,m) = a(n-1)10^(n+1)(n-1)+a(n-2)10^(n+1)(n-2)+ ... +a(1)10^(n+1)+a(0)+ 10m(10^(n+1)(n-2)+10^(n+1)(n-3)+ ... +10^(n+1)+1.

Considering this equality modulo (10^n – 1)  and using the fact that  10^(n+1)  is congruent to 10 mod (10^n – 1), leads to H(m,m) ===  m+10m(10^(n-2)+10^(n-3)+ ... 10+1)  (mod (10^n – 1)) ===  m + m(10^(n-1)+10^(n-2)+ ... +10+1 – 1)   (mod (10^n – 1)) ===  m R_n   (mod (10^n – 1)).

Since  R_n = (10^n – 1) /9, we have  H(m,m) === 0 (mod R_n), QED.

***

 

 

 

 


Records   |  Conjectures  |  Problems  |  Puzzles