Problems & Puzzles: Puzzles Puzzle 41.- Palindromic Carnival (dedicated to Patrick De Geest) Two weeks ago I started trying to create a puzzle thinking in the beauty and inspiring pages of my friend Patrick De Geest. My very first intention was to make a simple puzzle dealing only with Palprimes, but the Anagram of the Nine digits (A9D) soon invaded the searching space. I beg your pardon if - at the end the single puzzle resulted in a bizarre medusa. Try to enjoy this. A.- (A9D)/SOD(A9D)=Palindrome has 13 solutions. 164729835 /(1+2+3+4+5+6+7+8+9)= 3660663 Or maybe youll like them the same numbers this way better: 164729835 /(1+6+4+7+2+9+8+3+5)= 3660663 Questions: A1.- None of the Palindromes resulted in a prime number? Is there any special reason for this? Jim Howell pointed out that "actually 7715177 is prime..." (23/2/99), so the entire question has been settled down. B.- Pal1/SOD(Pal1) = Pal2 has the following first solutions:
Questions: B1.- Why Pal2 is not a prime number? B2.- Why SOD(Pal1) is always 36??!! B3.- Why the digital roots of Pal1= 9, or why the digital root of Pal2 =1? Nota bene: For the sections B, C, D & E the search was extended up to 10^9 C.- PalPrime1*SOD(PalPrime1) = Pal2 has the following first solutions:
Question C1.- Any special reason why SOD(Palprime1) is a prime number? D.- Pal1/POD(Pal1) = Pal2 has the following first and few solutions:
(*) We are not showing the trivial cases where Pal1 = R(k) for k=>1 Questions: D1.- Is any hidden rule behind this relation? D2.- Can exists a case with Pal2 being a prime number? D3.- Can you extend this sequence? E.- Pal1*POD(Pal1)=Pal2 has the following solutions:
(*) We are not showing the trivial cases where POD(Pal1)=1, 2 , 3 or 4. Questions: E1.- Is there any special reason why POD(Pal1) takes specifically the values 49, 96 or 192 (49 =7^2, 96 =3*2^5; 192 =3*2^6)? F.- ABS(A9D - Reverse(A9D)) = Palindrome has several ( a lot of ) solutions. But all of them can be divided in two cases: or Palindrome is 544505445 or Palindrome is 90900909. Examples: - 128954376 + 673459821 = 544505445 Question F1.- Can you explain why this occurs? G.- A9D\the Beast =Palindrome has only two solutions 913572846\666 = 1371731(Palprime!) No questions. Take this only as a curio. H.- Prime factors of the A9Ds 961327458 = 2*3^2*7*13*17*19*23*79 (8 distinct prime
factors) Questions (in this case I have not had time to make an exhaustive search): Find another A9D: H1.- with more than 8 distinct prime factors H2.- with more than 21 prime factors I.- A9D/9 = Palindrome has 34 solutions. The entire palindromes resulted to be composite numbers. Any special reason for this? Example : 867594321/9 = 96399369 Note: Remember that A9D mod 9 = 0 always. J.- A9D=3^2*Prime = Expressible with all the numbers from 0 to 9. Example: 149256873= 3^2*16584097 Question: Can you find all the other A9Ds? K.- AD9s whose prime factors are all palindromes Here are some conspicuous of them: 127935864 = 2*2*2*3*3*7*7*36263 (the least A9D) 987643125 = 3*3*3*3*3*5*5*5*5*7*929 (the largest A9D) 258164793 = 3*3*3*9561659 (the least quantity 4 -of factors and the largest palindromic factor also) 536481792 = 2*2*2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*7*7*11 (the largest quantity 20 of factors) No questions. L.- Sum of k Consecutive A9Ds = A9D
Solutions J. C. Colin sent the following solutions (October 29, 2002) to question J: 365928471 = 3^2* 40658719 *** Later (on August, 2005) J. C. Coling found the following new results: In the table of the section B, there are two mistakes: SOD of 5499945 & 279999972 are 45 & 63, not 36 as wrongly stated. For section D, he found four more results:
* Palprime!...I calculate for all pal1 as far as 20 digits and there is no other solution than this six solutions. During calculation, I capture some other strange regularities I propose to your wonder : 11111133111111
/9 = 1234570345679 =
11 *333367*336667
2111111133311111112
/ 108 = 19547325308436214 ...
111111111333111111111
/ 27 = 4115226345670781893 0
111111113131311111111 / 27 = 4115226412270781893 0 111111131131131111111 / 27 = 4115227078930781893 0 111111311131113111111 / 27 = 4115233745596781893 0 111113111131111311111 / 27 = 4115300412263381893 0 111131111131111131111 / 27 = 4115967078930041893 0 111311111131111113111 / 27 = 4122633745596707893 0 113111111131111111311 / 27 = 4189300412263374493 0 131111111131111111131 / 27 = 4855967078930041153 0 311111111131111111113 / 27 = 11522633745596707819 0 ***
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||