Problems & Puzzles: Puzzles

Puzzle 41.- Palindromic Carnival (dedicated to Patrick De Geest)

Two weeks ago I started trying to create a puzzle thinking in the beauty and inspiring pages of my friend Patrick De Geest. My very first intention was to make a simple puzzle dealing only with Palprimes, but the Anagram of the Nine digits (A9D) soon invaded the searching space. I beg your pardon if - at the end – the “single puzzle” resulted in a bizarre medusa. Try to enjoy this.

A.- (A9D)/SOD(A9D)=Palindrome has 13 solutions.

164729835 /(1+2+3+4+5+6+7+8+9)= 3660663
231498675 /(1+2+3+4+5+6+7+8+9)= 5144415
248136975 /(1+2+3+4+5+6+7+8+9)= 5514155
248316975 /(1+2+3+4+5+6+7+8+9)= 5518155
248361975 /(1+2+3+4+5+6+7+8+9)= 5519155
321498765 /(1+2+3+4+5+6+7+8+9)= 7144417
326498715 /(1+2+3+4+5+6+7+8+9)= 7255527
328496715 /(1+2+3+4+5+6+7+8+9)= 7299927
347182965 /(1+2+3+4+5+6+7+8+9)= 7715177 (prime!)
348271965 /(1+2+3+4+5+6+7+8+9)= 7739377
632971845 /(1+2+3+4+5+6+7+8+9)= 14066041
736981245 /(1+2+3+4+5+6+7+8+9)= 16377361
812973645 /(1+2+3+4+5+6+7+8+9)= 18066081

Or maybe you’ll like them the same numbers this way better:

164729835 /(1+6+4+7+2+9+8+3+5)= 3660663
231498675 /(2+3+1+4+9+8+6+7+5)= 5144415
248136975 /(2+4+8+1+3+6+9+7+5)= 5514155
248316975 /(2+4+8+3+1+6+9+7+5)= 5518155
248361975 /(2+4+8+3+6+1+9+7+5)= 5519155
321498765 /(3+2+1+4+9+8+7+6+5)= 7144417
326498715 /(3+2+6+4+9+8+7+1+5)= 7255527
328496715 /(3+2+8+4+9+6+7+1+5)= 7299927
347182965 /(3+4+7+1+8+2+9+6+5)= 7715177 (prime!)
348271965 /(3+4+8+2+7+1+9+6+5)= 7739377
632971845 /(6+3+2+9+7+1+8+4+5)= 14066041
736981245 /(7+3+6+9+8+1+2+4+5)= 16377361
812973645 /(8+1+2+9+7+3+6+4+5)= 18066081

Questions:

A1.- None of the Palindromes resulted in a prime number? Is there any special reason for thisJim Howell pointed out that "actually 7715177 is prime..." (23/2/99), so the entire question has been settled down.

B.- Pal1/SOD(Pal1) = Pal2 has the following first solutions:

Pal1 SOD(Pal1) Pal2
279972 36      7777
2774772 36      77077
5499945 36      122221
25477452 36      707707
27722772 36      770077
254545452 36      7070707
277202772 36      7700077
279999972 36      4444444

Questions:

B1.- Why Pal2 is not a prime number?

B2.- Why SOD(Pal1) is always 36??!!

B3.- Why the digital roots of Pal1= 9, or why the digital root of Pal2 =1?

Nota bene: For the sections B, C, D & E the search was extended up to 10^9

C.- PalPrime1*SOD(PalPrime1) = Pal2 has the following first solutions:

PalPrime1 SOD(Palprime1) Pal2
11 2 22
101 2 202
353 11 3883
13331 11 146641
1123211 11 12355321
1221221 11 13433431
1303031 11 14333341
1311131 11 14422441
3103013 11 34133143
100111001 5 500555005
110111011 7 770777077
110232011 11 1212552121
111010111 7 777070777
111050111 11 1221551221
112030211 11 1232332321
112111211 11 1233223321
121111121 11 1332222331
130030031 11 1430330341
301111103 11 3312222133

Question C1.- Any special reason why SOD(Palprime1) is a prime number?

D.- Pal1/POD(Pal1) = Pal2 has the following first and few solutions:

Pal1 (*) POD(pal1) Pal2
4224 64 66
42624 384 111

(*) We are not showing the trivial cases where Pal1 = R(k) for k=>1

Questions:

D1.- Is any hidden rule behind this relation?

D2.- Can exists a case with Pal2 being a prime number?

D3.- Can you extend this sequence?

E.- Pal1*POD(Pal1)=Pal2 has the following solutions:

Pal1 POD(Pal1) (*) Pal2
77 49 3773
464 96 44544
22622 96 2171712
22622 96 2171712
2223222 192 426858624
4213124 192 808919808
122232221 192 23468586432
142131241 192 27289198272
212232212 192 40748584704
221232122 192 42476567424
222131222 192 42649194624
241131142 192 46297179264
421131124 192 80857175808

(*) We are not showing the trivial cases where POD(Pal1)=1, 2 , 3 or 4.

Questions:

E1.- Is there any special reason why POD(Pal1) takes specifically the values 49, 96 or 192 (49 =7^2, 96 =3*2^5; 192 =3*2^6)?

F.- ABS(A9D - Reverse(A9D)) = Palindrome has several ( a lot of ) solutions. But all of them can be divided in two cases: or Palindrome is 544505445 or Palindrome is 90900909.

Examples:

- 128954376 + 673459821 = 544505445
- 145897632 + 236798541 = 90900909

Question

F1.- Can you explain why this occurs?

G.- A9D\the Beast =Palindrome has only two solutions

913572846\666 = 1371731(Palprime!)
264197538\666 =   396693 (Palindrome)

No questions. Take this only as a curio.

H.- Prime factors of the A9D’s

961327458 = 2*3^2*7*13*17*19*23*79 (8 distinct prime factors)
943128576 =2^16*3^3*13*41 (21 prime factors)

Questions (in this case I have not had time to make an exhaustive search):

Find another A9D:

H1.- with more than 8 distinct prime factors

H2.- with more than 21 prime factors

I.- A9D/9 =   Palindrome has 34 solutions. The entire palindromes resulted to be composite numbers. Any special reason for this?

Example : 867594321/9 = 96399369

Note: Remember that A9D mod 9 = 0 always.

J.- A9D=3^2*Prime = Expressible with all the numbers from 0 to 9.

Example: 149256873= 3^2*16584097

Question: Can you find all the other A9D’s?

K.- AD9’s whose prime factors are all palindromes

Here are some conspicuous of them:

127935864 = 2*2*2*3*3*7*7*36263 (the least A9D)

987643125 = 3*3*3*3*3*5*5*5*5*7*929 (the largest A9D)

258164793 = 3*3*3*9561659 (the least quantity – 4 -of factors and the largest palindromic factor also)

536481792   = 2*2*2*2*2*2*2*2*2*2*2*2*3*3*3*3*3*7*7*11 (the largest quantity – 20 – of factors)

No questions.

L.- Sum of k Consecutive A9D’s = A9D

k The least example
2 123456789 + 123456798 = 246913587
3 123954786 + 123954867 + 123954876 = 371864529
4 123465978 + 123465987 + 123467589
+ 123467598 =   493867152
5 123456798 + 123456879 + 123456897
+ 123456978 +   123456987 =  617284539
6 123768549 + 123768594 + 123768945
+ 123768954 +   123769458 + 123769485 = 742613985
7 123675894 + 123675948 + 123675984 + 123678459
+ 123678495 + 123678549 + 123678594 =   865741923
8 Can you find an example of eight A9D’s – not necessarily consecutive - such
that added they result in another A9D?

Jim Howell has found (23/2/99) two solutions to this question:

"a) 123456789 + 123456789 + ... (8 times) = 987654312
b) Replace one of the 123456789 with 123456798, and the sum is
987654321

The examples above are the smallest sums of 8 anagrams, so that any other sum of 8 (or 9),
including those with distinct anagrams, will be greater than 987654321.  So there are no
solutions possible with 8 distinct anagrams."


Solutions

J. C. Colin sent the following solutions (October 29, 2002) to question J:

365928471  = 3^2* 40658719
 438216759  = 3^2* 48690751
 459871623  = 3^2* 51096847
 491562873  = 3^2* 54618097
 526149873  = 3^2* 58461097
 639527841  = 3^2* 71058649
 671382549  = 3^2* 74598061
 716854329  = 3^2* 79650481
 871654239  = 3^2* 96850471
 871659423  = 3^2* 96851047
 873526149  = 3^2* 97058461

***

Later (on August, 2005) J. C. Coling found the following new results:

In the table of the section B, there are two mistakes: SOD of 5499945 & 279999972 are 45 & 63, not 36 as wrongly stated.

For section D, he found four more results:

digit(pal1)

pal1

pod(pal1)

pal2 = pal1/pod(pal1)

10

2114114112

64

33033033

11

21141314112

192

110111011*

12

211221122112

64

3300330033

13

2112213122112

192

11001110011

* Palprime!...I calculate for all pal1 as far as 20 digits and there is no other solution than this six solutions.

During calculation, I capture some other strange regularities I propose to your wonder :

11111133111111       /9 = 1234570345679 = 11 *333367*336667
11111311311111       /9 = 1234590145679 = 11 *
112235467789
11113111131111       /9 = 1234790125679 = 11 *29*4357*888413
11131111113111       /9 = 1236790123679 = 11 *337*367*909091
11311111111311       /9 = 1256790123479 = 11
*114253647589
13111111111131       /9 = 1456790123459 = 11 *31*53*673*119771
31111111111113       /9 = 3456790123457 = 11 *11*23*47*26427857

 

212

2112

21112

211112

2111112

21111112

211111112

2111111112

....

n>1,   2(1)n2

/4 =

/4 =

/4 =

/4 =

/4 =

/4 =

/4 =

/4 =

...

/4 =

53

528

5278

52778

527778

5277778

52777778

527777778

     ...

52(7)n-28

 2111111133311111112 / 108  =  19547325308436214
 2111111313131111112 / 108  =  19547326973436214
 2111113113113111112 / 108  =  19547343639936214
 2111131113111311112 / 108  =  19547510306586214
 2111311113111131112 / 108  =  19549176973251214
 2113111113111113112 / 108  =  19565843639917714
 2131111113111111312 / 108  =  19732510306584364
 2311111113111111132 / 108  =  21399176973251029

...

111111111333111111111 / 27  =  4115226345670781893  0

 111111113131311111111 / 27  =  4115226412270781893  0

 111111131131131111111 / 27  =  4115227078930781893  0

 111111311131113111111 / 27  =  4115233745596781893  0

 111113111131111311111 / 27  =  4115300412263381893  0

 111131111131111131111 / 27  =  4115967078930041893  0

 111311111131111113111 / 27  =  4122633745596707893  0

 113111111131111111311 / 27  =  4189300412263374493  0 

 131111111131111111131 / 27  =  4855967078930041153  0

 311111111131111111113 / 27  =  11522633745596707819  0

***

 

 

 

 

 

 


Records   |  Conjectures  |  Problems  |  Puzzles